summaryrefslogtreecommitdiff
path: root/src/shared/pty.c
blob: 31123e5af20636e71476ae52043327af5e99ba5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/

/***
  This file is part of systemd.

  Copyright 2014 David Herrmann <dh.herrmann@gmail.com>

  systemd is free software; you can redistribute it and/or modify it
  under the terms of the GNU Lesser General Public License as published by
  the Free Software Foundation; either version 2.1 of the License, or
  (at your option) any later version.

  systemd is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/

/*
 * PTY
 * A PTY object represents a single PTY connection between a master and a
 * child. The child process is fork()ed so the caller controls what program
 * will be run.
 *
 * Programs like /bin/login tend to perform a vhangup() on their TTY
 * before running the login procedure. This also causes the pty master
 * to get a EPOLLHUP event as long as no client has the TTY opened.
 * This means, we cannot use the TTY connection as reliable way to track
 * the client. Instead, we _must_ rely on the PID of the client to track
 * them.
 * However, this has the side effect that if the client forks and the
 * parent exits, we loose them and restart the client. But this seems to
 * be the expected behavior so we implement it here.
 *
 * Unfortunately, epoll always polls for EPOLLHUP so as long as the
 * vhangup() is ongoing, we will _always_ get EPOLLHUP and cannot sleep.
 * This gets worse if the client closes the TTY but doesn't exit.
 * Therefore, the fd must be edge-triggered in the epoll-set so we
 * only get the events once they change.
 */

#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/ioctl.h>
#include <pty.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <termios.h>
#include <unistd.h>

#include "barrier.h"
#include "macro.h"
#include "pty.h"
#include "ring.h"
#include "util.h"

#define PTY_BUFSIZE 16384

enum {
        PTY_ROLE_UNKNOWN,
        PTY_ROLE_PARENT,
        PTY_ROLE_CHILD,
};

struct Pty {
        unsigned long ref;
        Barrier barrier;
        int fd;
        pid_t child;
        sd_event_source *fd_source;
        sd_event_source *child_source;

        char in_buf[PTY_BUFSIZE];
        Ring out_buf;

        pty_event_t event_fn;
        void *event_fn_userdata;

        bool needs_requeue : 1;
        unsigned int role : 2;
};

int pty_new(Pty **out) {
        _pty_unref_ Pty *pty = NULL;
        int r;

        assert_return(out, -EINVAL);

        pty = new0(Pty, 1);
        if (!pty)
                return -ENOMEM;

        pty->ref = 1;
        pty->fd = -1;
        pty->barrier = (Barrier) BARRIER_NULL;

        pty->fd = posix_openpt(O_RDWR | O_NOCTTY | O_CLOEXEC | O_NONBLOCK);
        if (pty->fd < 0)
                return -errno;

        /*
         * The slave-node is initialized to uid/gid of the caller of
         * posix_openpt(). Only if devpts is mounted with fixed uid/gid this is
         * skipped. In that case, grantpt() can overwrite these, but then you
         * have to be root to use chown() (or a pt_chown helper has to be
         * present). In those cases grantpt() really does something,
         * otherwise it's a no-op. We call grantpt() here to try supporting
         * those cases, even though no-one uses that, I guess. If you need other
         * access-rights, set them yourself after this call returns (no, this is
         * not racy, it looks racy, but races regarding your own UID are never
         * important as an attacker could ptrace you; and the slave-pty is also
         * still locked).
         */
        r = grantpt(pty->fd);
        if (r < 0)
                return -errno;

        r = barrier_create(&pty->barrier);
        if (r < 0)
                return r;

        *out = pty;
        pty = NULL;
        return 0;
}

Pty *pty_ref(Pty *pty) {
        if (!pty || pty->ref < 1)
                return NULL;

        ++pty->ref;
        return pty;
}

Pty *pty_unref(Pty *pty) {
        if (!pty || pty->ref < 1 || --pty->ref > 0)
                return NULL;

        pty_close(pty);
        pty->child_source = sd_event_source_unref(pty->child_source);
        barrier_destroy(&pty->barrier);
        ring_clear(&pty->out_buf);
        free(pty);

        return NULL;
}

Barrier *pty_get_barrier(Pty *pty) {
        assert(pty);
        return &pty->barrier;
}

bool pty_is_unknown(Pty *pty) {
        return pty && pty->role == PTY_ROLE_UNKNOWN;
}

bool pty_is_parent(Pty *pty) {
        return pty && pty->role == PTY_ROLE_PARENT;
}

bool pty_is_child(Pty *pty) {
        return pty && pty->role == PTY_ROLE_CHILD;
}

bool pty_has_child(Pty *pty) {
        return pty_is_parent(pty) && pty->child > 0;
}

pid_t pty_get_child(Pty *pty) {
        return pty_has_child(pty) ? pty->child : -ECHILD;
}

bool pty_is_open(Pty *pty) {
        return pty && pty->fd >= 0;
}

int pty_get_fd(Pty *pty) {
        assert_return(pty, -EINVAL);

        return pty_is_open(pty) ? pty->fd : -EPIPE;
}

int pty_make_child(Pty *pty) {
        char slave_name[1024];
        int r, fd;

        assert_return(pty, -EINVAL);
        assert_return(pty_is_unknown(pty), -EALREADY);

        r = ptsname_r(pty->fd, slave_name, sizeof(slave_name));
        if (r < 0)
                return -errno;

        fd = open(slave_name, O_RDWR | O_CLOEXEC | O_NOCTTY);
        if (fd < 0)
                return -errno;

        safe_close(pty->fd);
        pty->fd = fd;
        pty->child = getpid();
        pty->role = PTY_ROLE_CHILD;
        barrier_set_role(&pty->barrier, BARRIER_CHILD);

        return 0;
}

int pty_make_parent(Pty *pty, pid_t child) {
        assert_return(pty, -EINVAL);
        assert_return(pty_is_unknown(pty), -EALREADY);

        pty->child = child;
        pty->role = PTY_ROLE_PARENT;

        return 0;
}

int pty_unlock(Pty *pty) {
        assert_return(pty, -EINVAL);
        assert_return(pty_is_unknown(pty) || pty_is_parent(pty), -EINVAL);
        assert_return(pty_is_open(pty), -ENODEV);

        return unlockpt(pty->fd) < 0 ? -errno : 0;
}

int pty_setup_child(Pty *pty) {
        struct termios attr;
        pid_t pid;
        int r;

        assert_return(pty, -EINVAL);
        assert_return(pty_is_child(pty), -EINVAL);
        assert_return(pty_is_open(pty), -EALREADY);

        r = sigprocmask_many(SIG_SETMASK, -1);
        if (r < 0)
                return r;

        r = reset_all_signal_handlers();
        if (r < 0)
                return r;

        pid = setsid();
        if (pid < 0 && errno != EPERM)
                return -errno;

        r = ioctl(pty->fd, TIOCSCTTY, 0);
        if (r < 0)
                return -errno;

        r = tcgetattr(pty->fd, &attr);
        if (r < 0)
                return -errno;

        /* erase character should be normal backspace, PLEASEEE! */
        attr.c_cc[VERASE] = 010;
        /* always set UTF8 flag */
        attr.c_iflag |= IUTF8;

        r = tcsetattr(pty->fd, TCSANOW, &attr);
        if (r < 0)
                return -errno;

        if (dup2(pty->fd, STDIN_FILENO) != STDIN_FILENO ||
            dup2(pty->fd, STDOUT_FILENO) != STDOUT_FILENO ||
            dup2(pty->fd, STDERR_FILENO) != STDERR_FILENO)
                return -errno;

        /* only close FD if it's not a std-fd */
        pty->fd = (pty->fd > 2) ? safe_close(pty->fd) : -1;

        return 0;
}

void pty_close(Pty *pty) {
        if (!pty_is_open(pty))
                return;

        pty->fd_source = sd_event_source_unref(pty->fd_source);
        pty->fd = safe_close(pty->fd);
}

/*
 * Drain input-queue and dispatch data via the event-handler. Returns <0 on
 * error, 0 if queue is empty and 1 if we couldn't empty the input queue fast
 * enough and there's still data left.
 */
static int pty_dispatch_read(Pty *pty) {
        unsigned int i;
        ssize_t len;
        int r;

        /*
         * We're edge-triggered, means we need to read the whole queue. This,
         * however, might cause us to stall if the writer is faster than we
         * are. Therefore, we read twice and if the second read still returned
         * data, we reschedule.
         */

        for (i = 0; i < 2; ++i) {
                len = read(pty->fd, pty->in_buf, sizeof(pty->in_buf) - 1);
                if (len < 0) {
                        if (errno == EINTR)
                                continue;

                        return (errno == EAGAIN) ? 0 : -errno;
                } else if (len == 0) {
                        continue;
                }

                /* set terminating zero for debugging safety */
                pty->in_buf[len] = 0;
                r = pty->event_fn(pty, pty->event_fn_userdata, PTY_DATA, pty->in_buf, len);
                if (r < 0)
                        return r;
        }

        /* still data left, make sure we're queued again */
        pty->needs_requeue = true;

        return 1;
}

/*
 * Drain output-queue by writing data to the pty. Returns <0 on error, 0 if the
 * output queue is empty now and 1 if we couldn't empty the output queue fast
 * enough and there's still data left.
 */
static int pty_dispatch_write(Pty *pty) {
        struct iovec vec[2];
        unsigned int i;
        ssize_t len;
        size_t num;

        /*
         * Same as pty_dispatch_read(), we're edge-triggered so we need to call
         * write() until either all data is written or it returns EAGAIN. We
         * call it twice and if it still writes successfully, we reschedule.
         */

        for (i = 0; i < 2; ++i) {
                num = ring_peek(&pty->out_buf, vec);
                if (num < 1)
                        return 0;

                len = writev(pty->fd, vec, (int)num);
                if (len < 0) {
                        if (errno == EINTR)
                                continue;

                        return (errno == EAGAIN) ? 1 : -errno;
                } else if (len == 0) {
                        continue;
                }

                ring_pull(&pty->out_buf, (size_t)len);
        }

        /* still data left, make sure we're queued again */
        if (ring_get_size(&pty->out_buf) > 0) {
                pty->needs_requeue = true;
                return 1;
        }

        return 0;
}

static int pty_fd_fn(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
        Pty *pty = userdata;
        int r_hup = 0, r_write = 0, r_read = 0, r;

        /*
         * Whenever we encounter I/O errors, we have to make sure to drain the
         * input queue first, before we handle any HUP. A child might send us
         * a message and immediately close the queue. We must not handle the
         * HUP first or we loose data.
         * Therefore, if we read a message successfully, we always return
         * success and wait for the next event-loop iteration. Furthermore,
         * whenever there is a write-error, we must try reading from the input
         * queue even if EPOLLIN is not set. The input might have arrived in
         * between epoll_wait() and write(). Therefore, write-errors are only
         * ever handled if the input-queue is empty. In all other cases they
         * are ignored until either reading fails or the input queue is empty.
         */

        if (revents & (EPOLLHUP | EPOLLERR))
                r_hup = -EPIPE;

        if (revents & EPOLLOUT)
                r_write = pty_dispatch_write(pty);

        /* Awesome! Kernel signals HUP without IN but queues are not empty.. */
        if ((revents & EPOLLIN) || r_hup < 0 || r_write < 0) {
                r_read = pty_dispatch_read(pty);
                if (r_read > 0)
                        return 0; /* still data left to fetch next round */
        }

        if (r_hup < 0 || r_write < 0 || r_read < 0) {
                /* PTY closed and input-queue drained */
                pty_close(pty);
                r = pty->event_fn(pty, pty->event_fn_userdata, PTY_HUP, NULL, 0);
                if (r < 0)
                        return r;
        }

        return 0;
}

static int pty_fd_prepare_fn(sd_event_source *source, void *userdata) {
        Pty *pty = userdata;
        int r;

        if (pty->needs_requeue) {
                /*
                 * We're edge-triggered. In case we couldn't handle all events
                 * or in case new write-data is queued, we set needs_requeue.
                 * Before going asleep, we set the io-events *again*. sd-event
                 * notices that we're edge-triggered and forwards the call to
                 * the kernel even if the events didn't change. The kernel will
                 * check the events and re-queue us on the ready queue in case
                 * an event is pending.
                 */
                r = sd_event_source_set_io_events(source, EPOLLHUP | EPOLLERR | EPOLLIN | EPOLLOUT | EPOLLET);
                if (r >= 0)
                        pty->needs_requeue = false;
        }

        return 0;
}

static int pty_child_fn(sd_event_source *source, const siginfo_t *si, void *userdata) {
        Pty *pty = userdata;
        int r;

        pty->child = 0;

        r = pty->event_fn(pty, pty->event_fn_userdata, PTY_CHILD, si, sizeof(*si));
        if (r < 0)
                return r;

        return 0;
}

int pty_attach_event(Pty *pty, sd_event *event, pty_event_t event_fn, void *event_fn_userdata) {
        int r;

        assert_return(pty, -EINVAL);
        assert_return(event, -EINVAL);
        assert_return(event_fn, -EINVAL);
        assert_return(pty_is_parent(pty), -EINVAL);

        pty_detach_event(pty);

        if (pty_is_open(pty)) {
                r = sd_event_add_io(event,
                                    &pty->fd_source,
                                    pty->fd,
                                    EPOLLHUP | EPOLLERR | EPOLLIN | EPOLLOUT | EPOLLET,
                                    pty_fd_fn,
                                    pty);
                if (r < 0)
                        goto error;

                r = sd_event_source_set_prepare(pty->fd_source, pty_fd_prepare_fn);
                if (r < 0)
                        goto error;
        }

        if (pty_has_child(pty)) {
                r = sd_event_add_child(event,
                                       &pty->child_source,
                                       pty->child,
                                       WEXITED,
                                       pty_child_fn,
                                       pty);
                if (r < 0)
                        goto error;
        }

        pty->event_fn = event_fn;
        pty->event_fn_userdata = event_fn_userdata;

        return 0;

error:
        pty_detach_event(pty);
        return r;
}

void pty_detach_event(Pty *pty) {
        if (!pty)
                return;

        pty->child_source = sd_event_source_unref(pty->child_source);
        pty->fd_source = sd_event_source_unref(pty->fd_source);
        pty->event_fn = NULL;
        pty->event_fn_userdata = NULL;
}

int pty_write(Pty *pty, const void *buf, size_t size) {
        bool was_empty;
        int r;

        assert_return(pty, -EINVAL);
        assert_return(pty_is_open(pty), -ENODEV);
        assert_return(pty_is_parent(pty), -ENODEV);

        if (size < 1)
                return 0;

        /*
         * Push @buf[0..@size] into the output ring-buffer. In case the
         * ring-buffer wasn't empty beforehand, we're already waiting for
         * EPOLLOUT and we're done. If it was empty, we have to re-queue the
         * FD for EPOLLOUT as we're edge-triggered and wouldn't get any new
         * EPOLLOUT event.
         */

        was_empty = ring_get_size(&pty->out_buf) < 1;

        r = ring_push(&pty->out_buf, buf, size);
        if (r < 0)
                return r;

        if (was_empty)
                pty->needs_requeue = true;

        return 0;
}

int pty_signal(Pty *pty, int sig) {
        assert_return(pty, -EINVAL);
        assert_return(pty_is_open(pty), -ENODEV);
        assert_return(pty_is_parent(pty), -ENODEV);

        return ioctl(pty->fd, TIOCSIG, sig) < 0 ? -errno : 0;
}

int pty_resize(Pty *pty, unsigned short term_width, unsigned short term_height) {
        struct winsize ws;

        assert_return(pty, -EINVAL);
        assert_return(pty_is_open(pty), -ENODEV);
        assert_return(pty_is_parent(pty), -ENODEV);

        zero(ws);
        ws.ws_col = term_width;
        ws.ws_row = term_height;

        /*
         * This will send SIGWINCH to the pty slave foreground process group.
         * We will also get one, but we don't need it.
         */
        return ioctl(pty->fd, TIOCSWINSZ, &ws) < 0 ? -errno : 0;
}

pid_t pty_fork(Pty **out, sd_event *event, pty_event_t event_fn, void *event_fn_userdata, unsigned short initial_term_width, unsigned short initial_term_height) {
        _pty_unref_ Pty *pty = NULL;
        int r;
        pid_t pid;

        assert_return(out, -EINVAL);
        assert_return((event && event_fn) || (!event && !event_fn), -EINVAL);

        r = pty_new(&pty);
        if (r < 0)
                return r;

        r = pty_unlock(pty);
        if (r < 0)
                return r;

        pid = fork();
        if (pid < 0)
                return -errno;

        if (pid == 0) {
                /* child */

                r = pty_make_child(pty);
                if (r < 0)
                        _exit(-r);

                r = pty_setup_child(pty);
                if (r < 0)
                        _exit(-r);

                /* sync with parent */
                if (!barrier_place_and_sync(&pty->barrier))
                        _exit(1);

                /* fallthrough and return the child's PTY object */
        } else {
                /* parent */

                r = pty_make_parent(pty, pid);
                if (r < 0)
                        goto parent_error;

                r = pty_resize(pty, initial_term_width, initial_term_height);
                if (r < 0)
                        goto parent_error;

                if (event) {
                        r = pty_attach_event(pty, event, event_fn, event_fn_userdata);
                        if (r < 0)
                                goto parent_error;
                }

                /* sync with child */
                if (!barrier_place_and_sync(&pty->barrier)) {
                        r = -ECHILD;
                        goto parent_error;
                }

                /* fallthrough and return the parent's PTY object */
        }

        *out = pty;
        pty = NULL;
        return pid;

parent_error:
        barrier_abort(&pty->barrier);
        waitpid(pty->child, NULL, 0);
        pty->child = 0;
        return r;
}