summaryrefslogtreecommitdiff
path: root/visualize/static/d3.geom.js
diff options
context:
space:
mode:
Diffstat (limited to 'visualize/static/d3.geom.js')
-rw-r--r--visualize/static/d3.geom.js868
1 files changed, 0 insertions, 868 deletions
diff --git a/visualize/static/d3.geom.js b/visualize/static/d3.geom.js
deleted file mode 100644
index ca1c13e1..00000000
--- a/visualize/static/d3.geom.js
+++ /dev/null
@@ -1,868 +0,0 @@
-/* d3.geom.js - Data Driven Documents
- * Version: 2.6.1
- * Homepage: http://mbostock.github.com/d3/
- * Copyright: 2010, Michael Bostock
- * Licence: 3-Clause BSD
- *
- * Copyright (c) 2010, Michael Bostock
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * * The name Michael Bostock may not be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL MICHAEL BOSTOCK BE LIABLE FOR ANY DIRECT,
- * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-(function(){d3.geom = {};
-/**
- * Computes a contour for a given input grid function using the <a
- * href="http://en.wikipedia.org/wiki/Marching_squares">marching
- * squares</a> algorithm. Returns the contour polygon as an array of points.
- *
- * @param grid a two-input function(x, y) that returns true for values
- * inside the contour and false for values outside the contour.
- * @param start an optional starting point [x, y] on the grid.
- * @returns polygon [[x1, y1], [x2, y2], …]
- */
-d3.geom.contour = function(grid, start) {
- var s = start || d3_geom_contourStart(grid), // starting point
- c = [], // contour polygon
- x = s[0], // current x position
- y = s[1], // current y position
- dx = 0, // next x direction
- dy = 0, // next y direction
- pdx = NaN, // previous x direction
- pdy = NaN, // previous y direction
- i = 0;
-
- do {
- // determine marching squares index
- i = 0;
- if (grid(x-1, y-1)) i += 1;
- if (grid(x, y-1)) i += 2;
- if (grid(x-1, y )) i += 4;
- if (grid(x, y )) i += 8;
-
- // determine next direction
- if (i === 6) {
- dx = pdy === -1 ? -1 : 1;
- dy = 0;
- } else if (i === 9) {
- dx = 0;
- dy = pdx === 1 ? -1 : 1;
- } else {
- dx = d3_geom_contourDx[i];
- dy = d3_geom_contourDy[i];
- }
-
- // update contour polygon
- if (dx != pdx && dy != pdy) {
- c.push([x, y]);
- pdx = dx;
- pdy = dy;
- }
-
- x += dx;
- y += dy;
- } while (s[0] != x || s[1] != y);
-
- return c;
-};
-
-// lookup tables for marching directions
-var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
- d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
-
-function d3_geom_contourStart(grid) {
- var x = 0,
- y = 0;
-
- // search for a starting point; begin at origin
- // and proceed along outward-expanding diagonals
- while (true) {
- if (grid(x,y)) {
- return [x,y];
- }
- if (x === 0) {
- x = y + 1;
- y = 0;
- } else {
- x = x - 1;
- y = y + 1;
- }
- }
-}
-/**
- * Computes the 2D convex hull of a set of points using Graham's scanning
- * algorithm. The algorithm has been implemented as described in Cormen,
- * Leiserson, and Rivest's Introduction to Algorithms. The running time of
- * this algorithm is O(n log n), where n is the number of input points.
- *
- * @param vertices [[x1, y1], [x2, y2], …]
- * @returns polygon [[x1, y1], [x2, y2], …]
- */
-d3.geom.hull = function(vertices) {
- if (vertices.length < 3) return [];
-
- var len = vertices.length,
- plen = len - 1,
- points = [],
- stack = [],
- i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
-
- // find the starting ref point: leftmost point with the minimum y coord
- for (i=1; i<len; ++i) {
- if (vertices[i][1] < vertices[h][1]) {
- h = i;
- } else if (vertices[i][1] == vertices[h][1]) {
- h = (vertices[i][0] < vertices[h][0] ? i : h);
- }
- }
-
- // calculate polar angles from ref point and sort
- for (i=0; i<len; ++i) {
- if (i === h) continue;
- y1 = vertices[i][1] - vertices[h][1];
- x1 = vertices[i][0] - vertices[h][0];
- points.push({angle: Math.atan2(y1, x1), index: i});
- }
- points.sort(function(a, b) { return a.angle - b.angle; });
-
- // toss out duplicate angles
- a = points[0].angle;
- v = points[0].index;
- u = 0;
- for (i=1; i<plen; ++i) {
- j = points[i].index;
- if (a == points[i].angle) {
- // keep angle for point most distant from the reference
- x1 = vertices[v][0] - vertices[h][0];
- y1 = vertices[v][1] - vertices[h][1];
- x2 = vertices[j][0] - vertices[h][0];
- y2 = vertices[j][1] - vertices[h][1];
- if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
- points[i].index = -1;
- } else {
- points[u].index = -1;
- a = points[i].angle;
- u = i;
- v = j;
- }
- } else {
- a = points[i].angle;
- u = i;
- v = j;
- }
- }
-
- // initialize the stack
- stack.push(h);
- for (i=0, j=0; i<2; ++j) {
- if (points[j].index !== -1) {
- stack.push(points[j].index);
- i++;
- }
- }
- sp = stack.length;
-
- // do graham's scan
- for (; j<plen; ++j) {
- if (points[j].index === -1) continue; // skip tossed out points
- while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
- --sp;
- }
- stack[sp++] = points[j].index;
- }
-
- // construct the hull
- var poly = [];
- for (i=0; i<sp; ++i) {
- poly.push(vertices[stack[i]]);
- }
- return poly;
-}
-
-// are three points in counter-clockwise order?
-function d3_geom_hullCCW(i1, i2, i3, v) {
- var t, a, b, c, d, e, f;
- t = v[i1]; a = t[0]; b = t[1];
- t = v[i2]; c = t[0]; d = t[1];
- t = v[i3]; e = t[0]; f = t[1];
- return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
-}
-// Note: requires coordinates to be counterclockwise and convex!
-d3.geom.polygon = function(coordinates) {
-
- coordinates.area = function() {
- var i = 0,
- n = coordinates.length,
- a = coordinates[n - 1][0] * coordinates[0][1],
- b = coordinates[n - 1][1] * coordinates[0][0];
- while (++i < n) {
- a += coordinates[i - 1][0] * coordinates[i][1];
- b += coordinates[i - 1][1] * coordinates[i][0];
- }
- return (b - a) * .5;
- };
-
- coordinates.centroid = function(k) {
- var i = -1,
- n = coordinates.length - 1,
- x = 0,
- y = 0,
- a,
- b,
- c;
- if (!arguments.length) k = -1 / (6 * coordinates.area());
- while (++i < n) {
- a = coordinates[i];
- b = coordinates[i + 1];
- c = a[0] * b[1] - b[0] * a[1];
- x += (a[0] + b[0]) * c;
- y += (a[1] + b[1]) * c;
- }
- return [x * k, y * k];
- };
-
- // The Sutherland-Hodgman clipping algorithm.
- coordinates.clip = function(subject) {
- var input,
- i = -1,
- n = coordinates.length,
- j,
- m,
- a = coordinates[n - 1],
- b,
- c,
- d;
- while (++i < n) {
- input = subject.slice();
- subject.length = 0;
- b = coordinates[i];
- c = input[(m = input.length) - 1];
- j = -1;
- while (++j < m) {
- d = input[j];
- if (d3_geom_polygonInside(d, a, b)) {
- if (!d3_geom_polygonInside(c, a, b)) {
- subject.push(d3_geom_polygonIntersect(c, d, a, b));
- }
- subject.push(d);
- } else if (d3_geom_polygonInside(c, a, b)) {
- subject.push(d3_geom_polygonIntersect(c, d, a, b));
- }
- c = d;
- }
- a = b;
- }
- return subject;
- };
-
- return coordinates;
-};
-
-function d3_geom_polygonInside(p, a, b) {
- return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
-}
-
-// Intersect two infinite lines cd and ab.
-function d3_geom_polygonIntersect(c, d, a, b) {
- var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
- y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
- x13 = x1 - x3,
- x21 = x2 - x1,
- x43 = x4 - x3,
- y13 = y1 - y3,
- y21 = y2 - y1,
- y43 = y4 - y3,
- ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
- return [x1 + ua * x21, y1 + ua * y21];
-}
-// Adapted from Nicolas Garcia Belmonte's JIT implementation:
-// http://blog.thejit.org/2010/02/12/voronoi-tessellation/
-// http://blog.thejit.org/assets/voronoijs/voronoi.js
-// See lib/jit/LICENSE for details.
-
-// Notes:
-//
-// This implementation does not clip the returned polygons, so if you want to
-// clip them to a particular shape you will need to do that either in SVG or by
-// post-processing with d3.geom.polygon's clip method.
-//
-// If any vertices are coincident or have NaN positions, the behavior of this
-// method is undefined. Most likely invalid polygons will be returned. You
-// should filter invalid points, and consolidate coincident points, before
-// computing the tessellation.
-
-/**
- * @param vertices [[x1, y1], [x2, y2], …]
- * @returns polygons [[[x1, y1], [x2, y2], …], …]
- */
-d3.geom.voronoi = function(vertices) {
- var polygons = vertices.map(function() { return []; });
-
- d3_voronoi_tessellate(vertices, function(e) {
- var s1,
- s2,
- x1,
- x2,
- y1,
- y2;
- if (e.a === 1 && e.b >= 0) {
- s1 = e.ep.r;
- s2 = e.ep.l;
- } else {
- s1 = e.ep.l;
- s2 = e.ep.r;
- }
- if (e.a === 1) {
- y1 = s1 ? s1.y : -1e6;
- x1 = e.c - e.b * y1;
- y2 = s2 ? s2.y : 1e6;
- x2 = e.c - e.b * y2;
- } else {
- x1 = s1 ? s1.x : -1e6;
- y1 = e.c - e.a * x1;
- x2 = s2 ? s2.x : 1e6;
- y2 = e.c - e.a * x2;
- }
- var v1 = [x1, y1],
- v2 = [x2, y2];
- polygons[e.region.l.index].push(v1, v2);
- polygons[e.region.r.index].push(v1, v2);
- });
-
- // Reconnect the polygon segments into counterclockwise loops.
- return polygons.map(function(polygon, i) {
- var cx = vertices[i][0],
- cy = vertices[i][1];
- polygon.forEach(function(v) {
- v.angle = Math.atan2(v[0] - cx, v[1] - cy);
- });
- return polygon.sort(function(a, b) {
- return a.angle - b.angle;
- }).filter(function(d, i) {
- return !i || (d.angle - polygon[i - 1].angle > 1e-10);
- });
- });
-};
-
-var d3_voronoi_opposite = {"l": "r", "r": "l"};
-
-function d3_voronoi_tessellate(vertices, callback) {
-
- var Sites = {
- list: vertices
- .map(function(v, i) {
- return {
- index: i,
- x: v[0],
- y: v[1]
- };
- })
- .sort(function(a, b) {
- return a.y < b.y ? -1
- : a.y > b.y ? 1
- : a.x < b.x ? -1
- : a.x > b.x ? 1
- : 0;
- }),
- bottomSite: null
- };
-
- var EdgeList = {
- list: [],
- leftEnd: null,
- rightEnd: null,
-
- init: function() {
- EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
- EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
- EdgeList.leftEnd.r = EdgeList.rightEnd;
- EdgeList.rightEnd.l = EdgeList.leftEnd;
- EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
- },
-
- createHalfEdge: function(edge, side) {
- return {
- edge: edge,
- side: side,
- vertex: null,
- "l": null,
- "r": null
- };
- },
-
- insert: function(lb, he) {
- he.l = lb;
- he.r = lb.r;
- lb.r.l = he;
- lb.r = he;
- },
-
- leftBound: function(p) {
- var he = EdgeList.leftEnd;
- do {
- he = he.r;
- } while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
- he = he.l;
- return he;
- },
-
- del: function(he) {
- he.l.r = he.r;
- he.r.l = he.l;
- he.edge = null;
- },
-
- right: function(he) {
- return he.r;
- },
-
- left: function(he) {
- return he.l;
- },
-
- leftRegion: function(he) {
- return he.edge == null
- ? Sites.bottomSite
- : he.edge.region[he.side];
- },
-
- rightRegion: function(he) {
- return he.edge == null
- ? Sites.bottomSite
- : he.edge.region[d3_voronoi_opposite[he.side]];
- }
- };
-
- var Geom = {
-
- bisect: function(s1, s2) {
- var newEdge = {
- region: {"l": s1, "r": s2},
- ep: {"l": null, "r": null}
- };
-
- var dx = s2.x - s1.x,
- dy = s2.y - s1.y,
- adx = dx > 0 ? dx : -dx,
- ady = dy > 0 ? dy : -dy;
-
- newEdge.c = s1.x * dx + s1.y * dy
- + (dx * dx + dy * dy) * .5;
-
- if (adx > ady) {
- newEdge.a = 1;
- newEdge.b = dy / dx;
- newEdge.c /= dx;
- } else {
- newEdge.b = 1;
- newEdge.a = dx / dy;
- newEdge.c /= dy;
- }
-
- return newEdge;
- },
-
- intersect: function(el1, el2) {
- var e1 = el1.edge,
- e2 = el2.edge;
- if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
- return null;
- }
- var d = (e1.a * e2.b) - (e1.b * e2.a);
- if (Math.abs(d) < 1e-10) {
- return null;
- }
- var xint = (e1.c * e2.b - e2.c * e1.b) / d,
- yint = (e2.c * e1.a - e1.c * e2.a) / d,
- e1r = e1.region.r,
- e2r = e2.region.r,
- el,
- e;
- if ((e1r.y < e2r.y) ||
- (e1r.y == e2r.y && e1r.x < e2r.x)) {
- el = el1;
- e = e1;
- } else {
- el = el2;
- e = e2;
- }
- var rightOfSite = (xint >= e.region.r.x);
- if ((rightOfSite && (el.side === "l")) ||
- (!rightOfSite && (el.side === "r"))) {
- return null;
- }
- return {
- x: xint,
- y: yint
- };
- },
-
- rightOf: function(he, p) {
- var e = he.edge,
- topsite = e.region.r,
- rightOfSite = (p.x > topsite.x);
-
- if (rightOfSite && (he.side === "l")) {
- return 1;
- }
- if (!rightOfSite && (he.side === "r")) {
- return 0;
- }
- if (e.a === 1) {
- var dyp = p.y - topsite.y,
- dxp = p.x - topsite.x,
- fast = 0,
- above = 0;
-
- if ((!rightOfSite && (e.b < 0)) ||
- (rightOfSite && (e.b >= 0))) {
- above = fast = (dyp >= e.b * dxp);
- } else {
- above = ((p.x + p.y * e.b) > e.c);
- if (e.b < 0) {
- above = !above;
- }
- if (!above) {
- fast = 1;
- }
- }
- if (!fast) {
- var dxs = topsite.x - e.region.l.x;
- above = (e.b * (dxp * dxp - dyp * dyp)) <
- (dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
-
- if (e.b < 0) {
- above = !above;
- }
- }
- } else /* e.b == 1 */ {
- var yl = e.c - e.a * p.x,
- t1 = p.y - yl,
- t2 = p.x - topsite.x,
- t3 = yl - topsite.y;
-
- above = (t1 * t1) > (t2 * t2 + t3 * t3);
- }
- return he.side === "l" ? above : !above;
- },
-
- endPoint: function(edge, side, site) {
- edge.ep[side] = site;
- if (!edge.ep[d3_voronoi_opposite[side]]) return;
- callback(edge);
- },
-
- distance: function(s, t) {
- var dx = s.x - t.x,
- dy = s.y - t.y;
- return Math.sqrt(dx * dx + dy * dy);
- }
- };
-
- var EventQueue = {
- list: [],
-
- insert: function(he, site, offset) {
- he.vertex = site;
- he.ystar = site.y + offset;
- for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
- var next = list[i];
- if (he.ystar > next.ystar ||
- (he.ystar == next.ystar &&
- site.x > next.vertex.x)) {
- continue;
- } else {
- break;
- }
- }
- list.splice(i, 0, he);
- },
-
- del: function(he) {
- for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
- ls.splice(i, 1);
- },
-
- empty: function() { return EventQueue.list.length === 0; },
-
- nextEvent: function(he) {
- for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
- if (ls[i] == he) return ls[i+1];
- }
- return null;
- },
-
- min: function() {
- var elem = EventQueue.list[0];
- return {
- x: elem.vertex.x,
- y: elem.ystar
- };
- },
-
- extractMin: function() {
- return EventQueue.list.shift();
- }
- };
-
- EdgeList.init();
- Sites.bottomSite = Sites.list.shift();
-
- var newSite = Sites.list.shift(), newIntStar;
- var lbnd, rbnd, llbnd, rrbnd, bisector;
- var bot, top, temp, p, v;
- var e, pm;
-
- while (true) {
- if (!EventQueue.empty()) {
- newIntStar = EventQueue.min();
- }
- if (newSite && (EventQueue.empty()
- || newSite.y < newIntStar.y
- || (newSite.y == newIntStar.y
- && newSite.x < newIntStar.x))) { //new site is smallest
- lbnd = EdgeList.leftBound(newSite);
- rbnd = EdgeList.right(lbnd);
- bot = EdgeList.rightRegion(lbnd);
- e = Geom.bisect(bot, newSite);
- bisector = EdgeList.createHalfEdge(e, "l");
- EdgeList.insert(lbnd, bisector);
- p = Geom.intersect(lbnd, bisector);
- if (p) {
- EventQueue.del(lbnd);
- EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
- }
- lbnd = bisector;
- bisector = EdgeList.createHalfEdge(e, "r");
- EdgeList.insert(lbnd, bisector);
- p = Geom.intersect(bisector, rbnd);
- if (p) {
- EventQueue.insert(bisector, p, Geom.distance(p, newSite));
- }
- newSite = Sites.list.shift();
- } else if (!EventQueue.empty()) { //intersection is smallest
- lbnd = EventQueue.extractMin();
- llbnd = EdgeList.left(lbnd);
- rbnd = EdgeList.right(lbnd);
- rrbnd = EdgeList.right(rbnd);
- bot = EdgeList.leftRegion(lbnd);
- top = EdgeList.rightRegion(rbnd);
- v = lbnd.vertex;
- Geom.endPoint(lbnd.edge, lbnd.side, v);
- Geom.endPoint(rbnd.edge, rbnd.side, v);
- EdgeList.del(lbnd);
- EventQueue.del(rbnd);
- EdgeList.del(rbnd);
- pm = "l";
- if (bot.y > top.y) {
- temp = bot;
- bot = top;
- top = temp;
- pm = "r";
- }
- e = Geom.bisect(bot, top);
- bisector = EdgeList.createHalfEdge(e, pm);
- EdgeList.insert(llbnd, bisector);
- Geom.endPoint(e, d3_voronoi_opposite[pm], v);
- p = Geom.intersect(llbnd, bisector);
- if (p) {
- EventQueue.del(llbnd);
- EventQueue.insert(llbnd, p, Geom.distance(p, bot));
- }
- p = Geom.intersect(bisector, rrbnd);
- if (p) {
- EventQueue.insert(bisector, p, Geom.distance(p, bot));
- }
- } else {
- break;
- }
- }//end while
-
- for (lbnd = EdgeList.right(EdgeList.leftEnd);
- lbnd != EdgeList.rightEnd;
- lbnd = EdgeList.right(lbnd)) {
- callback(lbnd.edge);
- }
-}
-/**
-* @param vertices [[x1, y1], [x2, y2], …]
-* @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
- */
-d3.geom.delaunay = function(vertices) {
- var edges = vertices.map(function() { return []; }),
- triangles = [];
-
- // Use the Voronoi tessellation to determine Delaunay edges.
- d3_voronoi_tessellate(vertices, function(e) {
- edges[e.region.l.index].push(vertices[e.region.r.index]);
- });
-
- // Reconnect the edges into counterclockwise triangles.
- edges.forEach(function(edge, i) {
- var v = vertices[i],
- cx = v[0],
- cy = v[1];
- edge.forEach(function(v) {
- v.angle = Math.atan2(v[0] - cx, v[1] - cy);
- });
- edge.sort(function(a, b) {
- return a.angle - b.angle;
- });
- for (var j = 0, m = edge.length - 1; j < m; j++) {
- triangles.push([v, edge[j], edge[j + 1]]);
- }
- });
-
- return triangles;
-};
-// Constructs a new quadtree for the specified array of points. A quadtree is a
-// two-dimensional recursive spatial subdivision. This implementation uses
-// square partitions, dividing each square into four equally-sized squares. Each
-// point exists in a unique node; if multiple points are in the same position,
-// some points may be stored on internal nodes rather than leaf nodes. Quadtrees
-// can be used to accelerate various spatial operations, such as the Barnes-Hut
-// approximation for computing n-body forces, or collision detection.
-d3.geom.quadtree = function(points, x1, y1, x2, y2) {
- var p,
- i = -1,
- n = points.length;
-
- // Type conversion for deprecated API.
- if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
-
- // Allow bounds to be specified explicitly.
- if (arguments.length < 5) {
- if (arguments.length === 3) {
- y2 = x2 = y1;
- y1 = x1;
- } else {
- x1 = y1 = Infinity;
- x2 = y2 = -Infinity;
-
- // Compute bounds.
- while (++i < n) {
- p = points[i];
- if (p.x < x1) x1 = p.x;
- if (p.y < y1) y1 = p.y;
- if (p.x > x2) x2 = p.x;
- if (p.y > y2) y2 = p.y;
- }
-
- // Squarify the bounds.
- var dx = x2 - x1,
- dy = y2 - y1;
- if (dx > dy) y2 = y1 + dx;
- else x2 = x1 + dy;
- }
- }
-
- // Recursively inserts the specified point p at the node n or one of its
- // descendants. The bounds are defined by [x1, x2] and [y1, y2].
- function insert(n, p, x1, y1, x2, y2) {
- if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
- if (n.leaf) {
- var v = n.point;
- if (v) {
- // If the point at this leaf node is at the same position as the new
- // point we are adding, we leave the point associated with the
- // internal node while adding the new point to a child node. This
- // avoids infinite recursion.
- if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
- insertChild(n, p, x1, y1, x2, y2);
- } else {
- n.point = null;
- insertChild(n, v, x1, y1, x2, y2);
- insertChild(n, p, x1, y1, x2, y2);
- }
- } else {
- n.point = p;
- }
- } else {
- insertChild(n, p, x1, y1, x2, y2);
- }
- }
-
- // Recursively inserts the specified point p into a descendant of node n. The
- // bounds are defined by [x1, x2] and [y1, y2].
- function insertChild(n, p, x1, y1, x2, y2) {
- // Compute the split point, and the quadrant in which to insert p.
- var sx = (x1 + x2) * .5,
- sy = (y1 + y2) * .5,
- right = p.x >= sx,
- bottom = p.y >= sy,
- i = (bottom << 1) + right;
-
- // Recursively insert into the child node.
- n.leaf = false;
- n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
-
- // Update the bounds as we recurse.
- if (right) x1 = sx; else x2 = sx;
- if (bottom) y1 = sy; else y2 = sy;
- insert(n, p, x1, y1, x2, y2);
- }
-
- // Create the root node.
- var root = d3_geom_quadtreeNode();
-
- root.add = function(p) {
- insert(root, p, x1, y1, x2, y2);
- };
-
- root.visit = function(f) {
- d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
- };
-
- // Insert all points.
- points.forEach(root.add);
- return root;
-};
-
-function d3_geom_quadtreeNode() {
- return {
- leaf: true,
- nodes: [],
- point: null
- };
-}
-
-function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
- if (!f(node, x1, y1, x2, y2)) {
- var sx = (x1 + x2) * .5,
- sy = (y1 + y2) * .5,
- children = node.nodes;
- if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
- if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
- if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
- if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
- }
-}
-
-function d3_geom_quadtreePoint(p) {
- return {
- x: p[0],
- y: p[1]
- };
-}
-})();