summaryrefslogtreecommitdiff
path: root/lib/btrfs/btrfsvol/lvm.go
diff options
context:
space:
mode:
Diffstat (limited to 'lib/btrfs/btrfsvol/lvm.go')
-rw-r--r--lib/btrfs/btrfsvol/lvm.go355
1 files changed, 355 insertions, 0 deletions
diff --git a/lib/btrfs/btrfsvol/lvm.go b/lib/btrfs/btrfsvol/lvm.go
new file mode 100644
index 0000000..3b9ccf6
--- /dev/null
+++ b/lib/btrfs/btrfsvol/lvm.go
@@ -0,0 +1,355 @@
+package btrfsvol
+
+import (
+ "bytes"
+ "fmt"
+ "os"
+ "reflect"
+
+ "git.lukeshu.com/btrfs-progs-ng/lib/rbtree"
+ "git.lukeshu.com/btrfs-progs-ng/lib/util"
+)
+
+type LogicalVolume[PhysicalVolume util.File[PhysicalAddr]] struct {
+ name string
+
+ id2pv map[DeviceID]PhysicalVolume
+
+ logical2physical *rbtree.Tree[LogicalAddr, chunkMapping]
+ physical2logical map[DeviceID]*rbtree.Tree[PhysicalAddr, devextMapping]
+}
+
+var _ util.File[LogicalAddr] = (*LogicalVolume[util.File[PhysicalAddr]])(nil)
+
+func (lv *LogicalVolume[PhysicalVolume]) init() {
+ if lv.id2pv == nil {
+ lv.id2pv = make(map[DeviceID]PhysicalVolume)
+ }
+ if lv.logical2physical == nil {
+ lv.logical2physical = &rbtree.Tree[LogicalAddr, chunkMapping]{
+ KeyFn: func(chunk chunkMapping) LogicalAddr {
+ return chunk.LAddr
+ },
+ }
+ }
+ if lv.physical2logical == nil {
+ lv.physical2logical = make(map[DeviceID]*rbtree.Tree[PhysicalAddr, devextMapping], len(lv.id2pv))
+ }
+ for devid := range lv.id2pv {
+ if _, ok := lv.physical2logical[devid]; !ok {
+ lv.physical2logical[devid] = &rbtree.Tree[PhysicalAddr, devextMapping]{
+ KeyFn: func(ext devextMapping) PhysicalAddr {
+ return ext.PAddr
+ },
+ }
+ }
+ }
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) SetName(name string) {
+ lv.name = name
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) Name() string {
+ return lv.name
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) Size() (LogicalAddr, error) {
+ lv.init()
+ lastChunk := lv.logical2physical.Max()
+ if lastChunk == nil {
+ return 0, nil
+ }
+ return lastChunk.Value.LAddr.Add(lastChunk.Value.Size), nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) AddPhysicalVolume(id DeviceID, dev PhysicalVolume) error {
+ lv.init()
+ if other, exists := lv.id2pv[id]; exists {
+ return fmt.Errorf("(%p).AddPhysicalVolume: cannot add physical volume %q: already have physical volume %q with id=%v",
+ lv, dev.Name(), other.Name(), id)
+ }
+ lv.id2pv[id] = dev
+ lv.physical2logical[id] = &rbtree.Tree[PhysicalAddr, devextMapping]{
+ KeyFn: func(ext devextMapping) PhysicalAddr {
+ return ext.PAddr
+ },
+ }
+ return nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) PhysicalVolumes() map[DeviceID]PhysicalVolume {
+ dup := make(map[DeviceID]PhysicalVolume, len(lv.id2pv))
+ for k, v := range lv.id2pv {
+ dup[k] = v
+ }
+ return dup
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) ClearMappings() {
+ lv.logical2physical = nil
+ lv.physical2logical = nil
+}
+
+type Mapping struct {
+ LAddr LogicalAddr
+ PAddr QualifiedPhysicalAddr
+ Size AddrDelta
+ SizeLocked bool
+ Flags *BlockGroupFlags
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) AddMapping(m Mapping) error {
+ lv.init()
+ // sanity check
+ if _, haveDev := lv.id2pv[m.PAddr.Dev]; !haveDev {
+ return fmt.Errorf("(%p).AddMapping: do not have a physical volume with id=%v",
+ lv, m.PAddr.Dev)
+ }
+
+ // logical2physical
+ newChunk := chunkMapping{
+ LAddr: m.LAddr,
+ PAddrs: []QualifiedPhysicalAddr{m.PAddr},
+ Size: m.Size,
+ SizeLocked: m.SizeLocked,
+ Flags: m.Flags,
+ }
+ logicalOverlaps := lv.logical2physical.SearchRange(newChunk.cmpRange)
+ var err error
+ newChunk, err = newChunk.union(logicalOverlaps...)
+ if err != nil {
+ return fmt.Errorf("(%p).AddMapping: %w", lv, err)
+ }
+
+ // physical2logical
+ newExt := devextMapping{
+ PAddr: m.PAddr.Addr,
+ LAddr: m.LAddr,
+ Size: m.Size,
+ SizeLocked: m.SizeLocked,
+ Flags: m.Flags,
+ }
+ physicalOverlaps := lv.physical2logical[m.PAddr.Dev].SearchRange(newExt.cmpRange)
+ newExt, err = newExt.union(physicalOverlaps...)
+ if err != nil {
+ return fmt.Errorf("(%p).AddMapping: %w", lv, err)
+ }
+
+ // optimize
+ if len(logicalOverlaps) == 1 && reflect.DeepEqual(newChunk, logicalOverlaps[0]) &&
+ len(physicalOverlaps) == 1 && reflect.DeepEqual(newExt, physicalOverlaps[0]) {
+ return nil
+ }
+
+ // logical2physical
+ for _, chunk := range logicalOverlaps {
+ lv.logical2physical.Delete(chunk.LAddr)
+ }
+ lv.logical2physical.Insert(newChunk)
+
+ // physical2logical
+ for _, ext := range physicalOverlaps {
+ lv.physical2logical[m.PAddr.Dev].Delete(ext.PAddr)
+ }
+ lv.physical2logical[m.PAddr.Dev].Insert(newExt)
+
+ // sanity check
+ //
+ // This is in-theory unnescessary, but that assumes that I
+ // made no mistakes in my algorithm above.
+ if os.Getenv("PARANOID") != "" {
+ if err := lv.fsck(); err != nil {
+ return err
+ }
+ }
+
+ // done
+ return nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) fsck() error {
+ physical2logical := make(map[DeviceID]*rbtree.Tree[PhysicalAddr, devextMapping])
+ if err := lv.logical2physical.Walk(func(node *rbtree.Node[chunkMapping]) error {
+ chunk := node.Value
+ for _, stripe := range chunk.PAddrs {
+ if _, devOK := lv.id2pv[stripe.Dev]; !devOK {
+ return fmt.Errorf("(%p).fsck: chunk references physical volume %v which does not exist",
+ lv, stripe.Dev)
+ }
+ if _, exists := physical2logical[stripe.Dev]; !exists {
+ physical2logical[stripe.Dev] = &rbtree.Tree[PhysicalAddr, devextMapping]{
+ KeyFn: func(ext devextMapping) PhysicalAddr {
+ return ext.PAddr
+ },
+ }
+ }
+ physical2logical[stripe.Dev].Insert(devextMapping{
+ PAddr: stripe.Addr,
+ LAddr: chunk.LAddr,
+ Size: chunk.Size,
+ Flags: chunk.Flags,
+ })
+ }
+ return nil
+ }); err != nil {
+ return err
+ }
+
+ if len(lv.physical2logical) != len(physical2logical) {
+ return fmt.Errorf("(%p).fsck: skew between chunk tree and devext tree",
+ lv)
+ }
+ for devid := range lv.physical2logical {
+ if !lv.physical2logical[devid].Equal(physical2logical[devid]) {
+ return fmt.Errorf("(%p).fsck: skew between chunk tree and devext tree",
+ lv)
+ }
+ }
+
+ return nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) Mappings() []Mapping {
+ var ret []Mapping
+ _ = lv.logical2physical.Walk(func(node *rbtree.Node[chunkMapping]) error {
+ chunk := node.Value
+ var flags *BlockGroupFlags
+ if chunk.Flags != nil {
+ val := *chunk.Flags
+ flags = &val
+ }
+ for _, slice := range chunk.PAddrs {
+ ret = append(ret, Mapping{
+ LAddr: chunk.LAddr,
+ PAddr: slice,
+ Size: chunk.Size,
+ Flags: flags,
+ })
+ }
+ return nil
+ })
+ return ret
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) Resolve(laddr LogicalAddr) (paddrs map[QualifiedPhysicalAddr]struct{}, maxlen AddrDelta) {
+ node := lv.logical2physical.Search(func(chunk chunkMapping) int {
+ return chunkMapping{LAddr: laddr, Size: 1}.cmpRange(chunk)
+ })
+ if node == nil {
+ return nil, 0
+ }
+
+ chunk := node.Value
+
+ offsetWithinChunk := laddr.Sub(chunk.LAddr)
+ paddrs = make(map[QualifiedPhysicalAddr]struct{})
+ maxlen = chunk.Size - offsetWithinChunk
+ for _, stripe := range chunk.PAddrs {
+ paddrs[QualifiedPhysicalAddr{
+ Dev: stripe.Dev,
+ Addr: stripe.Addr.Add(offsetWithinChunk),
+ }] = struct{}{}
+ }
+
+ return paddrs, maxlen
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) ResolveAny(laddr LogicalAddr, size AddrDelta) (LogicalAddr, QualifiedPhysicalAddr) {
+ node := lv.logical2physical.Search(func(chunk chunkMapping) int {
+ return chunkMapping{LAddr: laddr, Size: size}.cmpRange(chunk)
+ })
+ if node == nil {
+ return -1, QualifiedPhysicalAddr{0, -1}
+ }
+ return node.Value.LAddr, node.Value.PAddrs[0]
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) UnResolve(paddr QualifiedPhysicalAddr) LogicalAddr {
+ node := lv.physical2logical[paddr.Dev].Search(func(ext devextMapping) int {
+ return devextMapping{PAddr: paddr.Addr, Size: 1}.cmpRange(ext)
+ })
+ if node == nil {
+ return -1
+ }
+
+ ext := node.Value
+
+ offsetWithinExt := paddr.Addr.Sub(ext.PAddr)
+ return ext.LAddr.Add(offsetWithinExt)
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) ReadAt(dat []byte, laddr LogicalAddr) (int, error) {
+ done := 0
+ for done < len(dat) {
+ n, err := lv.maybeShortReadAt(dat[done:], laddr+LogicalAddr(done))
+ done += n
+ if err != nil {
+ return done, err
+ }
+ }
+ return done, nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) maybeShortReadAt(dat []byte, laddr LogicalAddr) (int, error) {
+ paddrs, maxlen := lv.Resolve(laddr)
+ if len(paddrs) == 0 {
+ return 0, fmt.Errorf("read: could not map logical address %v", laddr)
+ }
+ if AddrDelta(len(dat)) > maxlen {
+ dat = dat[:maxlen]
+ }
+
+ buf := make([]byte, len(dat))
+ first := true
+ for paddr := range paddrs {
+ dev, ok := lv.id2pv[paddr.Dev]
+ if !ok {
+ return 0, fmt.Errorf("device=%v does not exist", paddr.Dev)
+ }
+ if _, err := dev.ReadAt(buf, paddr.Addr); err != nil {
+ return 0, fmt.Errorf("read device=%v paddr=%v: %w", paddr.Dev, paddr.Addr, err)
+ }
+ if first {
+ copy(dat, buf)
+ } else {
+ if !bytes.Equal(dat, buf) {
+ return 0, fmt.Errorf("inconsistent stripes at laddr=%v len=%v", laddr, len(dat))
+ }
+ }
+ }
+ return len(dat), nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) WriteAt(dat []byte, laddr LogicalAddr) (int, error) {
+ done := 0
+ for done < len(dat) {
+ n, err := lv.maybeShortWriteAt(dat[done:], laddr+LogicalAddr(done))
+ done += n
+ if err != nil {
+ return done, err
+ }
+ }
+ return done, nil
+}
+
+func (lv *LogicalVolume[PhysicalVolume]) maybeShortWriteAt(dat []byte, laddr LogicalAddr) (int, error) {
+ paddrs, maxlen := lv.Resolve(laddr)
+ if len(paddrs) == 0 {
+ return 0, fmt.Errorf("write: could not map logical address %v", laddr)
+ }
+ if AddrDelta(len(dat)) > maxlen {
+ dat = dat[:maxlen]
+ }
+
+ for paddr := range paddrs {
+ dev, ok := lv.id2pv[paddr.Dev]
+ if !ok {
+ return 0, fmt.Errorf("device=%v does not exist", paddr.Dev)
+ }
+ if _, err := dev.WriteAt(dat, paddr.Addr); err != nil {
+ return 0, fmt.Errorf("write device=%v paddr=%v: %w", paddr.Dev, paddr.Addr, err)
+ }
+ }
+ return len(dat), nil
+}