summaryrefslogtreecommitdiff
path: root/block/bfq-iosched.c
diff options
context:
space:
mode:
authorAndré Fabian Silva Delgado <emulatorman@parabola.nu>2016-09-11 04:34:46 -0300
committerAndré Fabian Silva Delgado <emulatorman@parabola.nu>2016-09-11 04:34:46 -0300
commit863981e96738983919de841ec669e157e6bdaeb0 (patch)
treed6d89a12e7eb8017837c057935a2271290907f76 /block/bfq-iosched.c
parent8dec7c70575785729a6a9e6719a955e9c545bcab (diff)
Linux-libre 4.7.1-gnupck-4.7.1-gnu
Diffstat (limited to 'block/bfq-iosched.c')
-rw-r--r--block/bfq-iosched.c2580
1 files changed, 1539 insertions, 1041 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
index d1f648d05..c2cb29873 100644
--- a/block/bfq-iosched.c
+++ b/block/bfq-iosched.c
@@ -7,25 +7,26 @@
* Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
* Paolo Valente <paolo.valente@unimore.it>
*
- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
+ * Copyright (C) 2016 Paolo Valente <paolo.valente@unimore.it>
*
* Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
* file.
*
- * BFQ is a proportional-share storage-I/O scheduling algorithm based on
- * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
- * measured in number of sectors, to processes instead of time slices. The
- * device is not granted to the in-service process for a given time slice,
- * but until it has exhausted its assigned budget. This change from the time
- * to the service domain allows BFQ to distribute the device throughput
- * among processes as desired, without any distortion due to ZBR, workload
- * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
- * called B-WF2Q+, to schedule processes according to their budgets. More
- * precisely, BFQ schedules queues associated to processes. Thanks to the
- * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
- * I/O-bound processes issuing sequential requests (to boost the
- * throughput), and yet guarantee a low latency to interactive and soft
- * real-time applications.
+ * BFQ is a proportional-share storage-I/O scheduling algorithm based
+ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
+ * budgets, measured in number of sectors, to processes instead of
+ * time slices. The device is not granted to the in-service process
+ * for a given time slice, but until it has exhausted its assigned
+ * budget. This change from the time to the service domain enables BFQ
+ * to distribute the device throughput among processes as desired,
+ * without any distortion due to throughput fluctuations, or to device
+ * internal queueing. BFQ uses an ad hoc internal scheduler, called
+ * B-WF2Q+, to schedule processes according to their budgets. More
+ * precisely, BFQ schedules queues associated with processes. Thanks to
+ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
+ * budgets to I/O-bound processes issuing sequential requests (to
+ * boost the throughput), and yet guarantee a low latency to
+ * interactive and soft real-time applications.
*
* BFQ is described in [1], where also a reference to the initial, more
* theoretical paper on BFQ can be found. The interested reader can find
@@ -87,7 +88,6 @@ static const int bfq_stats_min_budgets = 194;
/* Default maximum budget values, in sectors and number of requests. */
static const int bfq_default_max_budget = 16 * 1024;
-static const int bfq_max_budget_async_rq = 4;
/*
* Async to sync throughput distribution is controlled as follows:
@@ -97,8 +97,7 @@ static const int bfq_max_budget_async_rq = 4;
static const int bfq_async_charge_factor = 10;
/* Default timeout values, in jiffies, approximating CFQ defaults. */
-static const int bfq_timeout_sync = HZ / 8;
-static int bfq_timeout_async = HZ / 25;
+static const int bfq_timeout = HZ / 8;
struct kmem_cache *bfq_pool;
@@ -109,8 +108,9 @@ struct kmem_cache *bfq_pool;
#define BFQ_HW_QUEUE_THRESHOLD 4
#define BFQ_HW_QUEUE_SAMPLES 32
-#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
-#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
+#define BFQQ_SEEK_THR (sector_t)(8 * 100)
+#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
+#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
/* Min samples used for peak rate estimation (for autotuning). */
#define BFQ_PEAK_RATE_SAMPLES 32
@@ -141,16 +141,24 @@ struct kmem_cache *bfq_pool;
* The device's speed class is dynamically (re)detected in
* bfq_update_peak_rate() every time the estimated peak rate is updated.
*
- * In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
- * are the reference values for a slow/fast rotational device, whereas
- * R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
- * a slow/fast non-rotational device. Finally, device_speed_thresh are the
- * thresholds used to switch between speed classes.
+ * In the following definitions, R_slow[0]/R_fast[0] and
+ * T_slow[0]/T_fast[0] are the reference values for a slow/fast
+ * rotational device, whereas R_slow[1]/R_fast[1] and
+ * T_slow[1]/T_fast[1] are the reference values for a slow/fast
+ * non-rotational device. Finally, device_speed_thresh are the
+ * thresholds used to switch between speed classes. The reference
+ * rates are not the actual peak rates of the devices used as a
+ * reference, but slightly lower values. The reason for using these
+ * slightly lower values is that the peak-rate estimator tends to
+ * yield slightly lower values than the actual peak rate (it can yield
+ * the actual peak rate only if there is only one process doing I/O,
+ * and the process does sequential I/O).
+ *
* Both the reference peak rates and the thresholds are measured in
* sectors/usec, left-shifted by BFQ_RATE_SHIFT.
*/
-static int R_slow[2] = {1536, 10752};
-static int R_fast[2] = {17415, 34791};
+static int R_slow[2] = {1000, 10700};
+static int R_fast[2] = {14000, 33000};
/*
* To improve readability, a conversion function is used to initialize the
* following arrays, which entails that they can be initialized only in a
@@ -410,11 +418,7 @@ static bool bfq_differentiated_weights(struct bfq_data *bfqd)
*/
static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
{
- return
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
- !bfqd->active_numerous_groups &&
-#endif
- !bfq_differentiated_weights(bfqd);
+ return !bfq_differentiated_weights(bfqd);
}
/*
@@ -534,9 +538,19 @@ static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
static unsigned long bfq_serv_to_charge(struct request *rq,
struct bfq_queue *bfqq)
{
- return blk_rq_sectors(rq) *
- (1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
- bfq_async_charge_factor));
+ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
+ return blk_rq_sectors(rq);
+
+ /*
+ * If there are no weight-raised queues, then amplify service
+ * by just the async charge factor; otherwise amplify service
+ * by twice the async charge factor, to further reduce latency
+ * for weight-raised queues.
+ */
+ if (bfqq->bfqd->wr_busy_queues == 0)
+ return blk_rq_sectors(rq) * bfq_async_charge_factor;
+
+ return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
}
/**
@@ -591,12 +605,23 @@ static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
dur = bfqd->RT_prod;
do_div(dur, bfqd->peak_rate);
- return dur;
-}
+ /*
+ * Limit duration between 3 and 13 seconds. Tests show that
+ * higher values than 13 seconds often yield the opposite of
+ * the desired result, i.e., worsen responsiveness by letting
+ * non-interactive and non-soft-real-time applications
+ * preserve weight raising for a too long time interval.
+ *
+ * On the other end, lower values than 3 seconds make it
+ * difficult for most interactive tasks to complete their jobs
+ * before weight-raising finishes.
+ */
+ if (dur > msecs_to_jiffies(13000))
+ dur = msecs_to_jiffies(13000);
+ else if (dur < msecs_to_jiffies(3000))
+ dur = msecs_to_jiffies(3000);
-static unsigned bfq_bfqq_cooperations(struct bfq_queue *bfqq)
-{
- return bfqq->bic ? bfqq->bic->cooperations : 0;
+ return dur;
}
static void
@@ -606,31 +631,11 @@ bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
bfq_mark_bfqq_idle_window(bfqq);
else
bfq_clear_bfqq_idle_window(bfqq);
+
if (bic->saved_IO_bound)
bfq_mark_bfqq_IO_bound(bfqq);
else
bfq_clear_bfqq_IO_bound(bfqq);
- /* Assuming that the flag in_large_burst is already correctly set */
- if (bic->wr_time_left && bfqq->bfqd->low_latency &&
- !bfq_bfqq_in_large_burst(bfqq) &&
- bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
- /*
- * Start a weight raising period with the duration given by
- * the raising_time_left snapshot.
- */
- if (bfq_bfqq_busy(bfqq))
- bfqq->bfqd->wr_busy_queues++;
- bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
- bfqq->wr_cur_max_time = bic->wr_time_left;
- bfqq->last_wr_start_finish = jiffies;
- bfqq->entity.prio_changed = 1;
- }
- /*
- * Clear wr_time_left to prevent bfq_bfqq_save_state() from
- * getting confused about the queue's need of a weight-raising
- * period.
- */
- bic->wr_time_left = 0;
}
static int bfqq_process_refs(struct bfq_queue *bfqq)
@@ -640,7 +645,7 @@ static int bfqq_process_refs(struct bfq_queue *bfqq)
lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
- process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
+ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st;
BUG_ON(process_refs < 0);
return process_refs;
}
@@ -655,6 +660,7 @@ static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
hlist_del_init(&item->burst_list_node);
hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
bfqd->burst_size = 1;
+ bfqd->burst_parent_entity = bfqq->entity.parent;
}
/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
@@ -663,6 +669,10 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
/* Increment burst size to take into account also bfqq */
bfqd->burst_size++;
+ bfq_log_bfqq(bfqd, bfqq, "add_to_burst %d", bfqd->burst_size);
+
+ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
+
if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
struct bfq_queue *pos, *bfqq_item;
struct hlist_node *n;
@@ -672,15 +682,19 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
* other to consider this burst as large.
*/
bfqd->large_burst = true;
+ bfq_log_bfqq(bfqd, bfqq, "add_to_burst: large burst started");
/*
* We can now mark all queues in the burst list as
* belonging to a large burst.
*/
hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
- burst_list_node)
+ burst_list_node) {
bfq_mark_bfqq_in_large_burst(bfqq_item);
+ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
+ }
bfq_mark_bfqq_in_large_burst(bfqq);
+ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
/*
* From now on, and until the current burst finishes, any
@@ -692,67 +706,79 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
burst_list_node)
hlist_del_init(&pos->burst_list_node);
- } else /* burst not yet large: add bfqq to the burst list */
+ } else /*
+ * Burst not yet large: add bfqq to the burst list. Do
+ * not increment the ref counter for bfqq, because bfqq
+ * is removed from the burst list before freeing bfqq
+ * in put_queue.
+ */
hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
}
/*
- * If many queues happen to become active shortly after each other, then,
- * to help the processes associated to these queues get their job done as
- * soon as possible, it is usually better to not grant either weight-raising
- * or device idling to these queues. In this comment we describe, firstly,
- * the reasons why this fact holds, and, secondly, the next function, which
- * implements the main steps needed to properly mark these queues so that
- * they can then be treated in a different way.
+ * If many queues belonging to the same group happen to be created
+ * shortly after each other, then the processes associated with these
+ * queues have typically a common goal. In particular, bursts of queue
+ * creations are usually caused by services or applications that spawn
+ * many parallel threads/processes. Examples are systemd during boot,
+ * or git grep. To help these processes get their job done as soon as
+ * possible, it is usually better to not grant either weight-raising
+ * or device idling to their queues.
*
- * As for the terminology, we say that a queue becomes active, i.e.,
- * switches from idle to backlogged, either when it is created (as a
- * consequence of the arrival of an I/O request), or, if already existing,
- * when a new request for the queue arrives while the queue is idle.
- * Bursts of activations, i.e., activations of different queues occurring
- * shortly after each other, are typically caused by services or applications
- * that spawn or reactivate many parallel threads/processes. Examples are
- * systemd during boot or git grep.
+ * In this comment we describe, firstly, the reasons why this fact
+ * holds, and, secondly, the next function, which implements the main
+ * steps needed to properly mark these queues so that they can then be
+ * treated in a different way.
*
- * These services or applications benefit mostly from a high throughput:
- * the quicker the requests of the activated queues are cumulatively served,
- * the sooner the target job of these queues gets completed. As a consequence,
- * weight-raising any of these queues, which also implies idling the device
- * for it, is almost always counterproductive: in most cases it just lowers
- * throughput.
+ * The above services or applications benefit mostly from a high
+ * throughput: the quicker the requests of the activated queues are
+ * cumulatively served, the sooner the target job of these queues gets
+ * completed. As a consequence, weight-raising any of these queues,
+ * which also implies idling the device for it, is almost always
+ * counterproductive. In most cases it just lowers throughput.
*
- * On the other hand, a burst of activations may be also caused by the start
- * of an application that does not consist in a lot of parallel I/O-bound
- * threads. In fact, with a complex application, the burst may be just a
- * consequence of the fact that several processes need to be executed to
- * start-up the application. To start an application as quickly as possible,
- * the best thing to do is to privilege the I/O related to the application
- * with respect to all other I/O. Therefore, the best strategy to start as
- * quickly as possible an application that causes a burst of activations is
- * to weight-raise all the queues activated during the burst. This is the
+ * On the other hand, a burst of queue creations may be caused also by
+ * the start of an application that does not consist of a lot of
+ * parallel I/O-bound threads. In fact, with a complex application,
+ * several short processes may need to be executed to start-up the
+ * application. In this respect, to start an application as quickly as
+ * possible, the best thing to do is in any case to privilege the I/O
+ * related to the application with respect to all other
+ * I/O. Therefore, the best strategy to start as quickly as possible
+ * an application that causes a burst of queue creations is to
+ * weight-raise all the queues created during the burst. This is the
* exact opposite of the best strategy for the other type of bursts.
*
- * In the end, to take the best action for each of the two cases, the two
- * types of bursts need to be distinguished. Fortunately, this seems
- * relatively easy to do, by looking at the sizes of the bursts. In
- * particular, we found a threshold such that bursts with a larger size
- * than that threshold are apparently caused only by services or commands
- * such as systemd or git grep. For brevity, hereafter we call just 'large'
- * these bursts. BFQ *does not* weight-raise queues whose activations occur
- * in a large burst. In addition, for each of these queues BFQ performs or
- * does not perform idling depending on which choice boosts the throughput
- * most. The exact choice depends on the device and request pattern at
+ * In the end, to take the best action for each of the two cases, the
+ * two types of bursts need to be distinguished. Fortunately, this
+ * seems relatively easy, by looking at the sizes of the bursts. In
+ * particular, we found a threshold such that only bursts with a
+ * larger size than that threshold are apparently caused by
+ * services or commands such as systemd or git grep. For brevity,
+ * hereafter we call just 'large' these bursts. BFQ *does not*
+ * weight-raise queues whose creation occurs in a large burst. In
+ * addition, for each of these queues BFQ performs or does not perform
+ * idling depending on which choice boosts the throughput more. The
+ * exact choice depends on the device and request pattern at
* hand.
*
- * Turning back to the next function, it implements all the steps needed
- * to detect the occurrence of a large burst and to properly mark all the
- * queues belonging to it (so that they can then be treated in a different
- * way). This goal is achieved by maintaining a special "burst list" that
- * holds, temporarily, the queues that belong to the burst in progress. The
- * list is then used to mark these queues as belonging to a large burst if
- * the burst does become large. The main steps are the following.
+ * Unfortunately, false positives may occur while an interactive task
+ * is starting (e.g., an application is being started). The
+ * consequence is that the queues associated with the task do not
+ * enjoy weight raising as expected. Fortunately these false positives
+ * are very rare. They typically occur if some service happens to
+ * start doing I/O exactly when the interactive task starts.
*
- * . when the very first queue is activated, the queue is inserted into the
+ * Turning back to the next function, it implements all the steps
+ * needed to detect the occurrence of a large burst and to properly
+ * mark all the queues belonging to it (so that they can then be
+ * treated in a different way). This goal is achieved by maintaining a
+ * "burst list" that holds, temporarily, the queues that belong to the
+ * burst in progress. The list is then used to mark these queues as
+ * belonging to a large burst if the burst does become large. The main
+ * steps are the following.
+ *
+ * . when the very first queue is created, the queue is inserted into the
* list (as it could be the first queue in a possible burst)
*
* . if the current burst has not yet become large, and a queue Q that does
@@ -773,13 +799,13 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
*
* . the device enters a large-burst mode
*
- * . if a queue Q that does not belong to the burst is activated while
+ * . if a queue Q that does not belong to the burst is created while
* the device is in large-burst mode and shortly after the last time
* at which a queue either entered the burst list or was marked as
* belonging to the current large burst, then Q is immediately marked
* as belonging to a large burst.
*
- * . if a queue Q that does not belong to the burst is activated a while
+ * . if a queue Q that does not belong to the burst is created a while
* later, i.e., not shortly after, than the last time at which a queue
* either entered the burst list or was marked as belonging to the
* current large burst, then the current burst is deemed as finished and:
@@ -792,52 +818,44 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
* in a possible new burst (then the burst list contains just Q
* after this step).
*/
-static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
- bool idle_for_long_time)
+static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
/*
- * If bfqq happened to be activated in a burst, but has been idle
- * for at least as long as an interactive queue, then we assume
- * that, in the overall I/O initiated in the burst, the I/O
- * associated to bfqq is finished. So bfqq does not need to be
- * treated as a queue belonging to a burst anymore. Accordingly,
- * we reset bfqq's in_large_burst flag if set, and remove bfqq
- * from the burst list if it's there. We do not decrement instead
- * burst_size, because the fact that bfqq does not need to belong
- * to the burst list any more does not invalidate the fact that
- * bfqq may have been activated during the current burst.
- */
- if (idle_for_long_time) {
- hlist_del_init(&bfqq->burst_list_node);
- bfq_clear_bfqq_in_large_burst(bfqq);
- }
-
- /*
* If bfqq is already in the burst list or is part of a large
- * burst, then there is nothing else to do.
+ * burst, or finally has just been split, then there is
+ * nothing else to do.
*/
if (!hlist_unhashed(&bfqq->burst_list_node) ||
- bfq_bfqq_in_large_burst(bfqq))
+ bfq_bfqq_in_large_burst(bfqq) ||
+ time_is_after_eq_jiffies(bfqq->split_time +
+ msecs_to_jiffies(10)))
return;
/*
- * If bfqq's activation happens late enough, then the current
- * burst is finished, and related data structures must be reset.
+ * If bfqq's creation happens late enough, or bfqq belongs to
+ * a different group than the burst group, then the current
+ * burst is finished, and related data structures must be
+ * reset.
*
- * In this respect, consider the special case where bfqq is the very
- * first queue being activated. In this case, last_ins_in_burst is
- * not yet significant when we get here. But it is easy to verify
- * that, whether or not the following condition is true, bfqq will
- * end up being inserted into the burst list. In particular the
- * list will happen to contain only bfqq. And this is exactly what
- * has to happen, as bfqq may be the first queue in a possible
+ * In this respect, consider the special case where bfqq is
+ * the very first queue created after BFQ is selected for this
+ * device. In this case, last_ins_in_burst and
+ * burst_parent_entity are not yet significant when we get
+ * here. But it is easy to verify that, whether or not the
+ * following condition is true, bfqq will end up being
+ * inserted into the burst list. In particular the list will
+ * happen to contain only bfqq. And this is exactly what has
+ * to happen, as bfqq may be the first queue of the first
* burst.
*/
if (time_is_before_jiffies(bfqd->last_ins_in_burst +
- bfqd->bfq_burst_interval)) {
+ bfqd->bfq_burst_interval) ||
+ bfqq->entity.parent != bfqd->burst_parent_entity) {
bfqd->large_burst = false;
bfq_reset_burst_list(bfqd, bfqq);
- return;
+ bfq_log_bfqq(bfqd, bfqq,
+ "handle_burst: late activation or different group");
+ goto end;
}
/*
@@ -846,8 +864,9 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
* bfqq as belonging to this large burst immediately.
*/
if (bfqd->large_burst) {
+ bfq_log_bfqq(bfqd, bfqq, "handle_burst: marked in burst");
bfq_mark_bfqq_in_large_burst(bfqq);
- return;
+ goto end;
}
/*
@@ -856,25 +875,498 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
* queue. Then we add bfqq to the burst.
*/
bfq_add_to_burst(bfqd, bfqq);
+end:
+ /*
+ * At this point, bfqq either has been added to the current
+ * burst or has caused the current burst to terminate and a
+ * possible new burst to start. In particular, in the second
+ * case, bfqq has become the first queue in the possible new
+ * burst. In both cases last_ins_in_burst needs to be moved
+ * forward.
+ */
+ bfqd->last_ins_in_burst = jiffies;
+
+}
+
+static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ return entity->budget - entity->service;
+}
+
+/*
+ * If enough samples have been computed, return the current max budget
+ * stored in bfqd, which is dynamically updated according to the
+ * estimated disk peak rate; otherwise return the default max budget
+ */
+static int bfq_max_budget(struct bfq_data *bfqd)
+{
+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+ return bfq_default_max_budget;
+ else
+ return bfqd->bfq_max_budget;
+}
+
+/*
+ * Return min budget, which is a fraction of the current or default
+ * max budget (trying with 1/32)
+ */
+static int bfq_min_budget(struct bfq_data *bfqd)
+{
+ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+ return bfq_default_max_budget / 32;
+ else
+ return bfqd->bfq_max_budget / 32;
+}
+
+static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ bool compensate,
+ enum bfqq_expiration reason);
+
+/*
+ * The next function, invoked after the input queue bfqq switches from
+ * idle to busy, updates the budget of bfqq. The function also tells
+ * whether the in-service queue should be expired, by returning
+ * true. The purpose of expiring the in-service queue is to give bfqq
+ * the chance to possibly preempt the in-service queue, and the reason
+ * for preempting the in-service queue is to achieve one of the two
+ * goals below.
+ *
+ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
+ * expired because it has remained idle. In particular, bfqq may have
+ * expired for one of the following two reasons:
+ *
+ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
+ * did not make it to issue a new request before its last request
+ * was served;
+ *
+ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
+ * a new request before the expiration of the idling-time.
+ *
+ * Even if bfqq has expired for one of the above reasons, the process
+ * associated with the queue may be however issuing requests greedily,
+ * and thus be sensitive to the bandwidth it receives (bfqq may have
+ * remained idle for other reasons: CPU high load, bfqq not enjoying
+ * idling, I/O throttling somewhere in the path from the process to
+ * the I/O scheduler, ...). But if, after every expiration for one of
+ * the above two reasons, bfqq has to wait for the service of at least
+ * one full budget of another queue before being served again, then
+ * bfqq is likely to get a much lower bandwidth or resource time than
+ * its reserved ones. To address this issue, two countermeasures need
+ * to be taken.
+ *
+ * First, the budget and the timestamps of bfqq need to be updated in
+ * a special way on bfqq reactivation: they need to be updated as if
+ * bfqq did not remain idle and did not expire. In fact, if they are
+ * computed as if bfqq expired and remained idle until reactivation,
+ * then the process associated with bfqq is treated as if, instead of
+ * being greedy, it stopped issuing requests when bfqq remained idle,
+ * and restarts issuing requests only on this reactivation. In other
+ * words, the scheduler does not help the process recover the "service
+ * hole" between bfqq expiration and reactivation. As a consequence,
+ * the process receives a lower bandwidth than its reserved one. In
+ * contrast, to recover this hole, the budget must be updated as if
+ * bfqq was not expired at all before this reactivation, i.e., it must
+ * be set to the value of the remaining budget when bfqq was
+ * expired. Along the same line, timestamps need to be assigned the
+ * value they had the last time bfqq was selected for service, i.e.,
+ * before last expiration. Thus timestamps need to be back-shifted
+ * with respect to their normal computation (see [1] for more details
+ * on this tricky aspect).
+ *
+ * Secondly, to allow the process to recover the hole, the in-service
+ * queue must be expired too, to give bfqq the chance to preempt it
+ * immediately. In fact, if bfqq has to wait for a full budget of the
+ * in-service queue to be completed, then it may become impossible to
+ * let the process recover the hole, even if the back-shifted
+ * timestamps of bfqq are lower than those of the in-service queue. If
+ * this happens for most or all of the holes, then the process may not
+ * receive its reserved bandwidth. In this respect, it is worth noting
+ * that, being the service of outstanding requests unpreemptible, a
+ * little fraction of the holes may however be unrecoverable, thereby
+ * causing a little loss of bandwidth.
+ *
+ * The last important point is detecting whether bfqq does need this
+ * bandwidth recovery. In this respect, the next function deems the
+ * process associated with bfqq greedy, and thus allows it to recover
+ * the hole, if: 1) the process is waiting for the arrival of a new
+ * request (which implies that bfqq expired for one of the above two
+ * reasons), and 2) such a request has arrived soon. The first
+ * condition is controlled through the flag non_blocking_wait_rq,
+ * while the second through the flag arrived_in_time. If both
+ * conditions hold, then the function computes the budget in the
+ * above-described special way, and signals that the in-service queue
+ * should be expired. Timestamp back-shifting is done later in
+ * __bfq_activate_entity.
+ *
+ * 2. Reduce latency. Even if timestamps are not backshifted to let
+ * the process associated with bfqq recover a service hole, bfqq may
+ * however happen to have, after being (re)activated, a lower finish
+ * timestamp than the in-service queue. That is, the next budget of
+ * bfqq may have to be completed before the one of the in-service
+ * queue. If this is the case, then preempting the in-service queue
+ * allows this goal to be achieved, apart from the unpreemptible,
+ * outstanding requests mentioned above.
+ *
+ * Unfortunately, regardless of which of the above two goals one wants
+ * to achieve, service trees need first to be updated to know whether
+ * the in-service queue must be preempted. To have service trees
+ * correctly updated, the in-service queue must be expired and
+ * rescheduled, and bfqq must be scheduled too. This is one of the
+ * most costly operations (in future versions, the scheduling
+ * mechanism may be re-designed in such a way to make it possible to
+ * know whether preemption is needed without needing to update service
+ * trees). In addition, queue preemptions almost always cause random
+ * I/O, and thus loss of throughput. Because of these facts, the next
+ * function adopts the following simple scheme to avoid both costly
+ * operations and too frequent preemptions: it requests the expiration
+ * of the in-service queue (unconditionally) only for queues that need
+ * to recover a hole, or that either are weight-raised or deserve to
+ * be weight-raised.
+ */
+static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ bool arrived_in_time,
+ bool wr_or_deserves_wr)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
+ /*
+ * We do not clear the flag non_blocking_wait_rq here, as
+ * the latter is used in bfq_activate_bfqq to signal
+ * that timestamps need to be back-shifted (and is
+ * cleared right after).
+ */
+
+ /*
+ * In next assignment we rely on that either
+ * entity->service or entity->budget are not updated
+ * on expiration if bfqq is empty (see
+ * __bfq_bfqq_recalc_budget). Thus both quantities
+ * remain unchanged after such an expiration, and the
+ * following statement therefore assigns to
+ * entity->budget the remaining budget on such an
+ * expiration. For clarity, entity->service is not
+ * updated on expiration in any case, and, in normal
+ * operation, is reset only when bfqq is selected for
+ * service (see bfq_get_next_queue).
+ */
+ entity->budget = min_t(unsigned long,
+ bfq_bfqq_budget_left(bfqq),
+ bfqq->max_budget);
+
+ BUG_ON(entity->budget < 0);
+ return true;
+ }
+
+ entity->budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(bfqq->next_rq,bfqq));
+ BUG_ON(entity->budget < 0);
+
+ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
+ return wr_or_deserves_wr;
+}
+
+static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ unsigned int old_wr_coeff,
+ bool wr_or_deserves_wr,
+ bool interactive,
+ bool in_burst,
+ bool soft_rt)
+{
+ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
+ /* start a weight-raising period */
+ if (interactive) {
+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+ } else {
+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
+ BFQ_SOFTRT_WEIGHT_FACTOR;
+ bfqq->wr_cur_max_time =
+ bfqd->bfq_wr_rt_max_time;
+ }
+ /*
+ * If needed, further reduce budget to make sure it is
+ * close to bfqq's backlog, so as to reduce the
+ * scheduling-error component due to a too large
+ * budget. Do not care about throughput consequences,
+ * but only about latency. Finally, do not assign a
+ * too small budget either, to avoid increasing
+ * latency by causing too frequent expirations.
+ */
+ bfqq->entity.budget = min_t(unsigned long,
+ bfqq->entity.budget,
+ 2 * bfq_min_budget(bfqd));
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "wrais starting at %lu, rais_max_time %u",
+ jiffies,
+ jiffies_to_msecs(bfqq->wr_cur_max_time));
+ } else if (old_wr_coeff > 1) {
+ if (interactive) { /* update wr coeff and duration */
+ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+ } else if (in_burst) {
+ bfqq->wr_coeff = 1;
+ bfq_log_bfqq(bfqd, bfqq,
+ "wrais ending at %lu, rais_max_time %u",
+ jiffies,
+ jiffies_to_msecs(bfqq->
+ wr_cur_max_time));
+ } else if (time_before(
+ bfqq->last_wr_start_finish +
+ bfqq->wr_cur_max_time,
+ jiffies +
+ bfqd->bfq_wr_rt_max_time) &&
+ soft_rt) {
+ /*
+ * The remaining weight-raising time is lower
+ * than bfqd->bfq_wr_rt_max_time, which means
+ * that the application is enjoying weight
+ * raising either because deemed soft-rt in
+ * the near past, or because deemed interactive
+ * a long ago.
+ * In both cases, resetting now the current
+ * remaining weight-raising time for the
+ * application to the weight-raising duration
+ * for soft rt applications would not cause any
+ * latency increase for the application (as the
+ * new duration would be higher than the
+ * remaining time).
+ *
+ * In addition, the application is now meeting
+ * the requirements for being deemed soft rt.
+ * In the end we can correctly and safely
+ * (re)charge the weight-raising duration for
+ * the application with the weight-raising
+ * duration for soft rt applications.
+ *
+ * In particular, doing this recharge now, i.e.,
+ * before the weight-raising period for the
+ * application finishes, reduces the probability
+ * of the following negative scenario:
+ * 1) the weight of a soft rt application is
+ * raised at startup (as for any newly
+ * created application),
+ * 2) since the application is not interactive,
+ * at a certain time weight-raising is
+ * stopped for the application,
+ * 3) at that time the application happens to
+ * still have pending requests, and hence
+ * is destined to not have a chance to be
+ * deemed soft rt before these requests are
+ * completed (see the comments to the
+ * function bfq_bfqq_softrt_next_start()
+ * for details on soft rt detection),
+ * 4) these pending requests experience a high
+ * latency because the application is not
+ * weight-raised while they are pending.
+ */
+ bfqq->last_wr_start_finish = jiffies;
+ bfqq->wr_cur_max_time =
+ bfqd->bfq_wr_rt_max_time;
+ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
+ BFQ_SOFTRT_WEIGHT_FACTOR;
+ bfq_log_bfqq(bfqd, bfqq,
+ "switching to soft_rt wr, or "
+ " just moving forward duration");
+ }
+ }
+}
+
+static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ return bfqq->dispatched == 0 &&
+ time_is_before_jiffies(
+ bfqq->budget_timeout +
+ bfqd->bfq_wr_min_idle_time);
+}
+
+static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ int old_wr_coeff,
+ struct request *rq,
+ bool *interactive)
+{
+ bool soft_rt, in_burst, wr_or_deserves_wr,
+ bfqq_wants_to_preempt,
+ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
+ /*
+ * See the comments on
+ * bfq_bfqq_update_budg_for_activation for
+ * details on the usage of the next variable.
+ */
+ arrived_in_time = time_is_after_jiffies(
+ RQ_BIC(rq)->ttime.last_end_request +
+ bfqd->bfq_slice_idle * 3);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "bfq_add_request non-busy: "
+ "jiffies %lu, in_time %d, idle_long %d busyw %d "
+ "wr_coeff %u",
+ jiffies, arrived_in_time,
+ idle_for_long_time,
+ bfq_bfqq_non_blocking_wait_rq(bfqq),
+ old_wr_coeff);
+
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+
+ BUG_ON(bfqq == bfqd->in_service_queue);
+ bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
+ rq->cmd_flags);
+
+ /*
+ * bfqq deserves to be weight-raised if:
+ * - it is sync,
+ * - it does not belong to a large burst,
+ * - it has been idle for enough time or is soft real-time,
+ * - is linked to a bfq_io_cq (it is not shared in any sense)
+ */
+ in_burst = bfq_bfqq_in_large_burst(bfqq);
+ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
+ !in_burst &&
+ time_is_before_jiffies(bfqq->soft_rt_next_start);
+ *interactive =
+ !in_burst &&
+ idle_for_long_time;
+ wr_or_deserves_wr = bfqd->low_latency &&
+ (bfqq->wr_coeff > 1 ||
+ (bfq_bfqq_sync(bfqq) &&
+ bfqq->bic && (*interactive || soft_rt)));
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "bfq_add_request: "
+ "in_burst %d, "
+ "soft_rt %d (next %lu), inter %d, bic %p",
+ bfq_bfqq_in_large_burst(bfqq), soft_rt,
+ bfqq->soft_rt_next_start,
+ *interactive,
+ bfqq->bic);
+
+ /*
+ * Using the last flag, update budget and check whether bfqq
+ * may want to preempt the in-service queue.
+ */
+ bfqq_wants_to_preempt =
+ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
+ arrived_in_time,
+ wr_or_deserves_wr);
+
+ /*
+ * If bfqq happened to be activated in a burst, but has been
+ * idle for much more than an interactive queue, then we
+ * assume that, in the overall I/O initiated in the burst, the
+ * I/O associated with bfqq is finished. So bfqq does not need
+ * to be treated as a queue belonging to a burst
+ * anymore. Accordingly, we reset bfqq's in_large_burst flag
+ * if set, and remove bfqq from the burst list if it's
+ * there. We do not decrement burst_size, because the fact
+ * that bfqq does not need to belong to the burst list any
+ * more does not invalidate the fact that bfqq was created in
+ * a burst.
+ */
+ if (likely(!bfq_bfqq_just_created(bfqq)) &&
+ idle_for_long_time &&
+ time_is_before_jiffies(
+ bfqq->budget_timeout +
+ msecs_to_jiffies(10000))) {
+ hlist_del_init(&bfqq->burst_list_node);
+ bfq_clear_bfqq_in_large_burst(bfqq);
+ }
+
+ bfq_clear_bfqq_just_created(bfqq);
+
+ if (!bfq_bfqq_IO_bound(bfqq)) {
+ if (arrived_in_time) {
+ bfqq->requests_within_timer++;
+ if (bfqq->requests_within_timer >=
+ bfqd->bfq_requests_within_timer)
+ bfq_mark_bfqq_IO_bound(bfqq);
+ } else
+ bfqq->requests_within_timer = 0;
+ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
+ bfqq->requests_within_timer);
+ }
+
+ if (bfqd->low_latency) {
+ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
+ /* wraparound */
+ bfqq->split_time =
+ jiffies - bfqd->bfq_wr_min_idle_time - 1;
+
+ if (time_is_before_jiffies(bfqq->split_time +
+ bfqd->bfq_wr_min_idle_time)) {
+ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
+ old_wr_coeff,
+ wr_or_deserves_wr,
+ *interactive,
+ in_burst,
+ soft_rt);
+
+ if (old_wr_coeff != bfqq->wr_coeff)
+ bfqq->entity.prio_changed = 1;
+ }
+ }
+
+ bfqq->last_idle_bklogged = jiffies;
+ bfqq->service_from_backlogged = 0;
+ bfq_clear_bfqq_softrt_update(bfqq);
+
+ bfq_add_bfqq_busy(bfqd, bfqq);
+
+ /*
+ * Expire in-service queue only if preemption may be needed
+ * for guarantees. In this respect, the function
+ * next_queue_may_preempt just checks a simple, necessary
+ * condition, and not a sufficient condition based on
+ * timestamps. In fact, for the latter condition to be
+ * evaluated, timestamps would need first to be updated, and
+ * this operation is quite costly (see the comments on the
+ * function bfq_bfqq_update_budg_for_activation).
+ */
+ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
+ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
+ next_queue_may_preempt(bfqd)) {
+ struct bfq_queue *in_serv =
+ bfqd->in_service_queue;
+ BUG_ON(in_serv == bfqq);
+
+ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
+ false, BFQ_BFQQ_PREEMPTED);
+ BUG_ON(in_serv->entity.budget < 0);
+ }
}
static void bfq_add_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
- struct bfq_entity *entity = &bfqq->entity;
struct bfq_data *bfqd = bfqq->bfqd;
struct request *next_rq, *prev;
- unsigned long old_wr_coeff = bfqq->wr_coeff;
+ unsigned int old_wr_coeff = bfqq->wr_coeff;
bool interactive = false;
- bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
+ bfq_log_bfqq(bfqd, bfqq, "add_request: size %u %s",
+ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
+
+ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
+ bfq_log_bfqq(bfqd, bfqq,
+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
+ jiffies_to_msecs(bfqq->wr_cur_max_time),
+ bfqq->wr_coeff,
+ bfqq->entity.weight, bfqq->entity.orig_weight);
+
bfqq->queued[rq_is_sync(rq)]++;
bfqd->queued++;
elv_rb_add(&bfqq->sort_list, rq);
/*
- * Check if this request is a better next-serve candidate.
+ * Check if this request is a better next-to-serve candidate.
*/
prev = bfqq->next_rq;
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
@@ -887,160 +1379,10 @@ static void bfq_add_request(struct request *rq)
if (prev != bfqq->next_rq)
bfq_pos_tree_add_move(bfqd, bfqq);
- if (!bfq_bfqq_busy(bfqq)) {
- bool soft_rt, coop_or_in_burst,
- idle_for_long_time = time_is_before_jiffies(
- bfqq->budget_timeout +
- bfqd->bfq_wr_min_idle_time);
-
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
- bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
- rq->cmd_flags);
-#endif
- if (bfq_bfqq_sync(bfqq)) {
- bool already_in_burst =
- !hlist_unhashed(&bfqq->burst_list_node) ||
- bfq_bfqq_in_large_burst(bfqq);
- bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
- /*
- * If bfqq was not already in the current burst,
- * then, at this point, bfqq either has been
- * added to the current burst or has caused the
- * current burst to terminate. In particular, in
- * the second case, bfqq has become the first
- * queue in a possible new burst.
- * In both cases last_ins_in_burst needs to be
- * moved forward.
- */
- if (!already_in_burst)
- bfqd->last_ins_in_burst = jiffies;
- }
-
- coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
- bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
- soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
- !coop_or_in_burst &&
- time_is_before_jiffies(bfqq->soft_rt_next_start);
- interactive = !coop_or_in_burst && idle_for_long_time;
- entity->budget = max_t(unsigned long, bfqq->max_budget,
- bfq_serv_to_charge(next_rq, bfqq));
-
- if (!bfq_bfqq_IO_bound(bfqq)) {
- if (time_before(jiffies,
- RQ_BIC(rq)->ttime.last_end_request +
- bfqd->bfq_slice_idle)) {
- bfqq->requests_within_timer++;
- if (bfqq->requests_within_timer >=
- bfqd->bfq_requests_within_timer)
- bfq_mark_bfqq_IO_bound(bfqq);
- } else
- bfqq->requests_within_timer = 0;
- }
-
- if (!bfqd->low_latency)
- goto add_bfqq_busy;
-
- if (bfq_bfqq_just_split(bfqq))
- goto set_prio_changed;
-
- /*
- * If the queue:
- * - is not being boosted,
- * - has been idle for enough time,
- * - is not a sync queue or is linked to a bfq_io_cq (it is
- * shared "for its nature" or it is not shared and its
- * requests have not been redirected to a shared queue)
- * start a weight-raising period.
- */
- if (old_wr_coeff == 1 && (interactive || soft_rt) &&
- (!bfq_bfqq_sync(bfqq) || bfqq->bic)) {
- bfqq->wr_coeff = bfqd->bfq_wr_coeff;
- if (interactive)
- bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
- else
- bfqq->wr_cur_max_time =
- bfqd->bfq_wr_rt_max_time;
- bfq_log_bfqq(bfqd, bfqq,
- "wrais starting at %lu, rais_max_time %u",
- jiffies,
- jiffies_to_msecs(bfqq->wr_cur_max_time));
- } else if (old_wr_coeff > 1) {
- if (interactive)
- bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
- else if (coop_or_in_burst ||
- (bfqq->wr_cur_max_time ==
- bfqd->bfq_wr_rt_max_time &&
- !soft_rt)) {
- bfqq->wr_coeff = 1;
- bfq_log_bfqq(bfqd, bfqq,
- "wrais ending at %lu, rais_max_time %u",
- jiffies,
- jiffies_to_msecs(bfqq->
- wr_cur_max_time));
- } else if (time_before(
- bfqq->last_wr_start_finish +
- bfqq->wr_cur_max_time,
- jiffies +
- bfqd->bfq_wr_rt_max_time) &&
- soft_rt) {
- /*
- *
- * The remaining weight-raising time is lower
- * than bfqd->bfq_wr_rt_max_time, which means
- * that the application is enjoying weight
- * raising either because deemed soft-rt in
- * the near past, or because deemed interactive
- * a long ago.
- * In both cases, resetting now the current
- * remaining weight-raising time for the
- * application to the weight-raising duration
- * for soft rt applications would not cause any
- * latency increase for the application (as the
- * new duration would be higher than the
- * remaining time).
- *
- * In addition, the application is now meeting
- * the requirements for being deemed soft rt.
- * In the end we can correctly and safely
- * (re)charge the weight-raising duration for
- * the application with the weight-raising
- * duration for soft rt applications.
- *
- * In particular, doing this recharge now, i.e.,
- * before the weight-raising period for the
- * application finishes, reduces the probability
- * of the following negative scenario:
- * 1) the weight of a soft rt application is
- * raised at startup (as for any newly
- * created application),
- * 2) since the application is not interactive,
- * at a certain time weight-raising is
- * stopped for the application,
- * 3) at that time the application happens to
- * still have pending requests, and hence
- * is destined to not have a chance to be
- * deemed soft rt before these requests are
- * completed (see the comments to the
- * function bfq_bfqq_softrt_next_start()
- * for details on soft rt detection),
- * 4) these pending requests experience a high
- * latency because the application is not
- * weight-raised while they are pending.
- */
- bfqq->last_wr_start_finish = jiffies;
- bfqq->wr_cur_max_time =
- bfqd->bfq_wr_rt_max_time;
- }
- }
-set_prio_changed:
- if (old_wr_coeff != bfqq->wr_coeff)
- entity->prio_changed = 1;
-add_bfqq_busy:
- bfqq->last_idle_bklogged = jiffies;
- bfqq->service_from_backlogged = 0;
- bfq_clear_bfqq_softrt_update(bfqq);
- bfq_add_bfqq_busy(bfqd, bfqq);
- } else {
+ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
+ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
+ rq, &interactive);
+ else {
if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
time_is_before_jiffies(
bfqq->last_wr_start_finish +
@@ -1049,16 +1391,43 @@ add_bfqq_busy:
bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
bfqd->wr_busy_queues++;
- entity->prio_changed = 1;
+ bfqq->entity.prio_changed = 1;
bfq_log_bfqq(bfqd, bfqq,
- "non-idle wrais starting at %lu, rais_max_time %u",
- jiffies,
- jiffies_to_msecs(bfqq->wr_cur_max_time));
+ "non-idle wrais starting, "
+ "wr_max_time %u wr_busy %d",
+ jiffies_to_msecs(bfqq->wr_cur_max_time),
+ bfqd->wr_busy_queues);
}
if (prev != bfqq->next_rq)
bfq_updated_next_req(bfqd, bfqq);
}
+ /*
+ * Assign jiffies to last_wr_start_finish in the following
+ * cases:
+ *
+ * . if bfqq is not going to be weight-raised, because, for
+ * non weight-raised queues, last_wr_start_finish stores the
+ * arrival time of the last request; as of now, this piece
+ * of information is used only for deciding whether to
+ * weight-raise async queues
+ *
+ * . if bfqq is not weight-raised, because, if bfqq is now
+ * switching to weight-raised, then last_wr_start_finish
+ * stores the time when weight-raising starts
+ *
+ * . if bfqq is interactive, because, regardless of whether
+ * bfqq is currently weight-raised, the weight-raising
+ * period must start or restart (this case is considered
+ * separately because it is not detected by the above
+ * conditions, if bfqq is already weight-raised)
+ *
+ * last_wr_start_finish has to be updated also if bfqq is soft
+ * real-time, because the weight-raising period is constantly
+ * restarted on idle-to-busy transitions for these queues, but
+ * this is already done in bfq_bfqq_handle_idle_busy_switch if
+ * needed.
+ */
if (bfqd->low_latency &&
(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
bfqq->last_wr_start_finish = jiffies;
@@ -1106,6 +1475,9 @@ static void bfq_remove_request(struct request *rq)
struct bfq_data *bfqd = bfqq->bfqd;
const int sync = rq_is_sync(rq);
+ BUG_ON(bfqq->entity.service > bfqq->entity.budget &&
+ bfqq == bfqd->in_service_queue);
+
if (bfqq->next_rq == rq) {
bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
bfq_updated_next_req(bfqd, bfqq);
@@ -1119,8 +1491,25 @@ static void bfq_remove_request(struct request *rq)
elv_rb_del(&bfqq->sort_list, rq);
if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
- if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
+ BUG_ON(bfqq->entity.budget < 0);
+
+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
bfq_del_bfqq_busy(bfqd, bfqq, 1);
+
+ /* bfqq emptied. In normal operation, when
+ * bfqq is empty, bfqq->entity.service and
+ * bfqq->entity.budget must contain,
+ * respectively, the service received and the
+ * budget used last time bfqq emptied. These
+ * facts do not hold in this case, as at least
+ * this last removal occurred while bfqq is
+ * not in service. To avoid inconsistencies,
+ * reset both bfqq->entity.service and
+ * bfqq->entity.budget.
+ */
+ bfqq->entity.budget = bfqq->entity.service = 0;
+ }
+
/*
* Remove queue from request-position tree as it is empty.
*/
@@ -1134,9 +1523,7 @@ static void bfq_remove_request(struct request *rq)
BUG_ON(bfqq->meta_pending == 0);
bfqq->meta_pending--;
}
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
-#endif
}
static int bfq_merge(struct request_queue *q, struct request **req,
@@ -1221,21 +1608,25 @@ static void bfq_merged_requests(struct request_queue *q, struct request *rq,
bfqq->next_rq = rq;
bfq_remove_request(next);
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
-#endif
}
/* Must be called with bfqq != NULL */
static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
{
BUG_ON(!bfqq);
+
if (bfq_bfqq_busy(bfqq))
bfqq->bfqd->wr_busy_queues--;
bfqq->wr_coeff = 1;
bfqq->wr_cur_max_time = 0;
- /* Trigger a weight change on the next activation of the queue */
+ /*
+ * Trigger a weight change on the next invocation of
+ * __bfq_entity_update_weight_prio.
+ */
bfqq->entity.prio_changed = 1;
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "end_wr: wr_busy %d",
+ bfqq->bfqd->wr_busy_queues);
}
static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
@@ -1278,7 +1669,7 @@ static int bfq_rq_close_to_sector(void *io_struct, bool request,
sector_t sector)
{
return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
- BFQQ_SEEK_THR;
+ BFQQ_CLOSE_THR;
}
static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
@@ -1400,7 +1791,7 @@ bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
* throughput.
*/
bfqq->new_bfqq = new_bfqq;
- atomic_add(process_refs, &new_bfqq->ref);
+ new_bfqq->ref += process_refs;
return new_bfqq;
}
@@ -1431,9 +1822,23 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
}
/*
- * Attempt to schedule a merge of bfqq with the currently in-service queue
- * or with a close queue among the scheduled queues.
- * Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
+ * If this function returns true, then bfqq cannot be merged. The idea
+ * is that true cooperation happens very early after processes start
+ * to do I/O. Usually, late cooperations are just accidental false
+ * positives. In case bfqq is weight-raised, such false positives
+ * would evidently degrade latency guarantees for bfqq.
+ */
+bool wr_from_too_long(struct bfq_queue *bfqq)
+{
+ return bfqq->wr_coeff > 1 &&
+ time_is_before_jiffies(bfqq->last_wr_start_finish +
+ msecs_to_jiffies(100));
+}
+
+/*
+ * Attempt to schedule a merge of bfqq with the currently in-service
+ * queue or with a close queue among the scheduled queues. Return
+ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
* structure otherwise.
*
* The OOM queue is not allowed to participate to cooperation: in fact, since
@@ -1442,6 +1847,18 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
* handle merging with the OOM queue would be quite complex and expensive
* to maintain. Besides, in such a critical condition as an out of memory,
* the benefits of queue merging may be little relevant, or even negligible.
+ *
+ * Weight-raised queues can be merged only if their weight-raising
+ * period has just started. In fact cooperating processes are usually
+ * started together. Thus, with this filter we avoid false positives
+ * that would jeopardize low-latency guarantees.
+ *
+ * WARNING: queue merging may impair fairness among non-weight raised
+ * queues, for at least two reasons: 1) the original weight of a
+ * merged queue may change during the merged state, 2) even being the
+ * weight the same, a merged queue may be bloated with many more
+ * requests than the ones produced by its originally-associated
+ * process.
*/
static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
@@ -1451,16 +1868,32 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
if (bfqq->new_bfqq)
return bfqq->new_bfqq;
- if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
+
+ if (io_struct && wr_from_too_long(bfqq) &&
+ likely(bfqq != &bfqd->oom_bfqq))
+ bfq_log_bfqq(bfqd, bfqq,
+ "would have looked for coop, but bfq%d wr",
+ bfqq->pid);
+
+ if (!io_struct ||
+ wr_from_too_long(bfqq) ||
+ unlikely(bfqq == &bfqd->oom_bfqq))
return NULL;
- /* If device has only one backlogged bfq_queue, don't search. */
+
+ /* If there is only one backlogged queue, don't search. */
if (bfqd->busy_queues == 1)
return NULL;
in_service_bfqq = bfqd->in_service_queue;
+ if (in_service_bfqq && in_service_bfqq != bfqq &&
+ bfqd->in_service_bic && wr_from_too_long(in_service_bfqq)
+ && likely(in_service_bfqq == &bfqd->oom_bfqq))
+ bfq_log_bfqq(bfqd, bfqq,
+ "would have tried merge with in-service-queue, but wr");
+
if (!in_service_bfqq || in_service_bfqq == bfqq ||
- !bfqd->in_service_bic ||
+ !bfqd->in_service_bic || wr_from_too_long(in_service_bfqq) ||
unlikely(in_service_bfqq == &bfqd->oom_bfqq))
goto check_scheduled;
@@ -1482,7 +1915,15 @@ check_scheduled:
BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
- if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
+ if (new_bfqq && wr_from_too_long(new_bfqq) &&
+ likely(new_bfqq != &bfqd->oom_bfqq) &&
+ bfq_may_be_close_cooperator(bfqq, new_bfqq))
+ bfq_log_bfqq(bfqd, bfqq,
+ "would have merged with bfq%d, but wr",
+ new_bfqq->pid);
+
+ if (new_bfqq && !wr_from_too_long(new_bfqq) &&
+ likely(new_bfqq != &bfqd->oom_bfqq) &&
bfq_may_be_close_cooperator(bfqq, new_bfqq))
return bfq_setup_merge(bfqq, new_bfqq);
@@ -1498,46 +1939,11 @@ static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
*/
if (!bfqq->bic)
return;
- if (bfqq->bic->wr_time_left)
- /*
- * This is the queue of a just-started process, and would
- * deserve weight raising: we set wr_time_left to the full
- * weight-raising duration to trigger weight-raising when
- * and if the queue is split and the first request of the
- * queue is enqueued.
- */
- bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
- else if (bfqq->wr_coeff > 1) {
- unsigned long wr_duration =
- jiffies - bfqq->last_wr_start_finish;
- /*
- * It may happen that a queue's weight raising period lasts
- * longer than its wr_cur_max_time, as weight raising is
- * handled only when a request is enqueued or dispatched (it
- * does not use any timer). If the weight raising period is
- * about to end, don't save it.
- */
- if (bfqq->wr_cur_max_time <= wr_duration)
- bfqq->bic->wr_time_left = 0;
- else
- bfqq->bic->wr_time_left =
- bfqq->wr_cur_max_time - wr_duration;
- /*
- * The bfq_queue is becoming shared or the requests of the
- * process owning the queue are being redirected to a shared
- * queue. Stop the weight raising period of the queue, as in
- * both cases it should not be owned by an interactive or
- * soft real-time application.
- */
- bfq_bfqq_end_wr(bfqq);
- } else
- bfqq->bic->wr_time_left = 0;
+
bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
- bfqq->bic->cooperations++;
- bfqq->bic->failed_cooperations = 0;
}
static void bfq_get_bic_reference(struct bfq_queue *bfqq)
@@ -1562,6 +1968,40 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
if (bfq_bfqq_IO_bound(bfqq))
bfq_mark_bfqq_IO_bound(new_bfqq);
bfq_clear_bfqq_IO_bound(bfqq);
+
+ /*
+ * If bfqq is weight-raised, then let new_bfqq inherit
+ * weight-raising. To reduce false positives, neglect the case
+ * where bfqq has just been created, but has not yet made it
+ * to be weight-raised (which may happen because EQM may merge
+ * bfqq even before bfq_add_request is executed for the first
+ * time for bfqq). Handling this case would however be very
+ * easy, thanks to the flag just_created.
+ */
+ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
+ new_bfqq->wr_coeff = bfqq->wr_coeff;
+ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
+ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
+ if (bfq_bfqq_busy(new_bfqq))
+ bfqd->wr_busy_queues++;
+ new_bfqq->entity.prio_changed = 1;
+ bfq_log_bfqq(bfqd, new_bfqq,
+ "wr starting after merge with %d, "
+ "rais_max_time %u",
+ bfqq->pid,
+ jiffies_to_msecs(bfqq->wr_cur_max_time));
+ }
+
+ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
+ bfqq->wr_coeff = 1;
+ bfqq->entity.prio_changed = 1;
+ if (bfq_bfqq_busy(bfqq))
+ bfqd->wr_busy_queues--;
+ }
+
+ bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
+ bfqd->wr_busy_queues);
+
/*
* Grab a reference to the bic, to prevent it from being destroyed
* before being possibly touched by a bfq_split_bfqq().
@@ -1588,18 +2028,6 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
bfq_put_queue(bfqq);
}
-static void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
-{
- struct bfq_io_cq *bic = bfqq->bic;
- struct bfq_data *bfqd = bfqq->bfqd;
-
- if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
- bic->failed_cooperations++;
- if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
- bic->cooperations = 0;
- }
-}
-
static int bfq_allow_merge(struct request_queue *q, struct request *rq,
struct bio *bio)
{
@@ -1637,30 +2065,86 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
* to decide whether bio and rq can be merged.
*/
bfqq = new_bfqq;
- } else
- bfq_bfqq_increase_failed_cooperations(bfqq);
+ }
}
return bfqq == RQ_BFQQ(rq);
}
+/*
+ * Set the maximum time for the in-service queue to consume its
+ * budget. This prevents seeky processes from lowering the throughput.
+ * In practice, a time-slice service scheme is used with seeky
+ * processes.
+ */
+static void bfq_set_budget_timeout(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ unsigned int timeout_coeff;
+ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
+ timeout_coeff = 1;
+ else
+ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
+
+ bfqd->last_budget_start = ktime_get();
+
+ bfqq->budget_timeout = jiffies +
+ bfqd->bfq_timeout * timeout_coeff;
+
+ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
+ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
+}
+
static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
if (bfqq) {
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
-#endif
bfq_mark_bfqq_must_alloc(bfqq);
- bfq_mark_bfqq_budget_new(bfqq);
bfq_clear_bfqq_fifo_expire(bfqq);
bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
+ BUG_ON(bfqq == bfqd->in_service_queue);
+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
+
+ if (bfqq->wr_coeff > 1 &&
+ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
+ time_is_before_jiffies(bfqq->budget_timeout)) {
+ /*
+ * For soft real-time queues, move the start
+ * of the weight-raising period forward by the
+ * time the queue has not received any
+ * service. Otherwise, a relatively long
+ * service delay is likely to cause the
+ * weight-raising period of the queue to end,
+ * because of the short duration of the
+ * weight-raising period of a soft real-time
+ * queue. It is worth noting that this move
+ * is not so dangerous for the other queues,
+ * because soft real-time queues are not
+ * greedy.
+ *
+ * To not add a further variable, we use the
+ * overloaded field budget_timeout to
+ * determine for how long the queue has not
+ * received service, i.e., how much time has
+ * elapsed since the queue expired. However,
+ * this is a little imprecise, because
+ * budget_timeout is set to jiffies if bfqq
+ * not only expires, but also remains with no
+ * request.
+ */
+ bfqq->last_wr_start_finish += jiffies -
+ bfqq->budget_timeout;
+ }
+
+ bfq_set_budget_timeout(bfqd, bfqq);
bfq_log_bfqq(bfqd, bfqq,
"set_in_service_queue, cur-budget = %d",
bfqq->entity.budget);
- }
+ } else
+ bfq_log(bfqd, "set_in_service_queue: NULL");
bfqd->in_service_queue = bfqq;
}
@@ -1676,31 +2160,6 @@ static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
return bfqq;
}
-/*
- * If enough samples have been computed, return the current max budget
- * stored in bfqd, which is dynamically updated according to the
- * estimated disk peak rate; otherwise return the default max budget
- */
-static int bfq_max_budget(struct bfq_data *bfqd)
-{
- if (bfqd->budgets_assigned < bfq_stats_min_budgets)
- return bfq_default_max_budget;
- else
- return bfqd->bfq_max_budget;
-}
-
-/*
- * Return min budget, which is a fraction of the current or default
- * max budget (trying with 1/32)
- */
-static int bfq_min_budget(struct bfq_data *bfqd)
-{
- if (bfqd->budgets_assigned < bfq_stats_min_budgets)
- return bfq_default_max_budget / 32;
- else
- return bfqd->bfq_max_budget / 32;
-}
-
static void bfq_arm_slice_timer(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->in_service_queue;
@@ -1729,58 +2188,30 @@ static void bfq_arm_slice_timer(struct bfq_data *bfqd)
sl = bfqd->bfq_slice_idle;
/*
* Unless the queue is being weight-raised or the scenario is
- * asymmetric, grant only minimum idle time if the queue either
- * has been seeky for long enough or has already proved to be
- * constantly seeky.
+ * asymmetric, grant only minimum idle time if the queue
+ * is seeky. A long idling is preserved for a weight-raised
+ * queue, or, more in general, in an asymemtric scenario,
+ * because a long idling is needed for guaranteeing to a queue
+ * its reserved share of the throughput (in particular, it is
+ * needed if the queue has a higher weight than some other
+ * queue).
*/
- if (bfq_sample_valid(bfqq->seek_samples) &&
- ((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
- bfq_max_budget(bfqq->bfqd) / 8) ||
- bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
+ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
bfq_symmetric_scenario(bfqd))
sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
- else if (bfqq->wr_coeff > 1)
- sl = sl * 3;
+
bfqd->last_idling_start = ktime_get();
mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
-#endif
bfq_log(bfqd, "arm idle: %u/%u ms",
jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
}
/*
- * Set the maximum time for the in-service queue to consume its
- * budget. This prevents seeky processes from lowering the disk
- * throughput (always guaranteed with a time slice scheme as in CFQ).
- */
-static void bfq_set_budget_timeout(struct bfq_data *bfqd)
-{
- struct bfq_queue *bfqq = bfqd->in_service_queue;
- unsigned int timeout_coeff;
- if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
- timeout_coeff = 1;
- else
- timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
-
- bfqd->last_budget_start = ktime_get();
-
- bfq_clear_bfqq_budget_new(bfqq);
- bfqq->budget_timeout = jiffies +
- bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
-
- bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
- jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
- timeout_coeff));
-}
-
-/*
- * Move request from internal lists to the request queue dispatch list.
+ * Move request from internal lists to the dispatch list of the request queue
*/
static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
{
- struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq = RQ_BFQQ(rq);
/*
@@ -1794,15 +2225,9 @@ static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
* incrementing bfqq->dispatched.
*/
bfqq->dispatched++;
+
bfq_remove_request(rq);
elv_dispatch_sort(q, rq);
-
- if (bfq_bfqq_sync(bfqq))
- bfqd->sync_flight++;
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
- bfqg_stats_update_dispatch(bfqq_group(bfqq), blk_rq_bytes(rq),
- rq->cmd_flags);
-#endif
}
/*
@@ -1822,18 +2247,12 @@ static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
rq = rq_entry_fifo(bfqq->fifo.next);
- if (time_before(jiffies, rq->fifo_time))
+ if (time_is_after_jiffies(rq->fifo_time))
return NULL;
return rq;
}
-static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
-{
- struct bfq_entity *entity = &bfqq->entity;
- return entity->budget - entity->service;
-}
-
static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
BUG_ON(bfqq != bfqd->in_service_queue);
@@ -1850,12 +2269,15 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_mark_bfqq_split_coop(bfqq);
if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
- /*
- * Overloading budget_timeout field to store the time
- * at which the queue remains with no backlog; used by
- * the weight-raising mechanism.
- */
- bfqq->budget_timeout = jiffies;
+ if (bfqq->dispatched == 0)
+ /*
+ * Overloading budget_timeout field to store
+ * the time at which the queue remains with no
+ * backlog and no outstanding request; used by
+ * the weight-raising mechanism.
+ */
+ bfqq->budget_timeout = jiffies;
+
bfq_del_bfqq_busy(bfqd, bfqq, 1);
} else {
bfq_activate_bfqq(bfqd, bfqq);
@@ -1882,10 +2304,19 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
struct request *next_rq;
int budget, min_budget;
- budget = bfqq->max_budget;
+ BUG_ON(bfqq != bfqd->in_service_queue);
+
min_budget = bfq_min_budget(bfqd);
- BUG_ON(bfqq != bfqd->in_service_queue);
+ if (bfqq->wr_coeff == 1)
+ budget = bfqq->max_budget;
+ else /*
+ * Use a constant, low budget for weight-raised queues,
+ * to help achieve a low latency. Keep it slightly higher
+ * than the minimum possible budget, to cause a little
+ * bit fewer expirations.
+ */
+ budget = 2 * min_budget;
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
@@ -1894,7 +2325,7 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
- if (bfq_bfqq_sync(bfqq)) {
+ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
switch (reason) {
/*
* Caveat: in all the following cases we trade latency
@@ -1936,14 +2367,10 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
break;
case BFQ_BFQQ_BUDGET_TIMEOUT:
/*
- * We double the budget here because: 1) it
- * gives the chance to boost the throughput if
- * this is not a seeky process (which may have
- * bumped into this timeout because of, e.g.,
- * ZBR), 2) together with charge_full_budget
- * it helps give seeky processes higher
- * timestamps, and hence be served less
- * frequently.
+ * We double the budget here because it gives
+ * the chance to boost the throughput if this
+ * is not a seeky process (and has bumped into
+ * this timeout because of, e.g., ZBR).
*/
budget = min(budget * 2, bfqd->bfq_max_budget);
break;
@@ -1960,17 +2387,49 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
budget = min(budget * 4, bfqd->bfq_max_budget);
break;
case BFQ_BFQQ_NO_MORE_REQUESTS:
- /*
- * Leave the budget unchanged.
- */
+ /*
+ * For queues that expire for this reason, it
+ * is particularly important to keep the
+ * budget close to the actual service they
+ * need. Doing so reduces the timestamp
+ * misalignment problem described in the
+ * comments in the body of
+ * __bfq_activate_entity. In fact, suppose
+ * that a queue systematically expires for
+ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
+ * new request in time to enjoy timestamp
+ * back-shifting. The larger the budget of the
+ * queue is with respect to the service the
+ * queue actually requests in each service
+ * slot, the more times the queue can be
+ * reactivated with the same virtual finish
+ * time. It follows that, even if this finish
+ * time is pushed to the system virtual time
+ * to reduce the consequent timestamp
+ * misalignment, the queue unjustly enjoys for
+ * many re-activations a lower finish time
+ * than all newly activated queues.
+ *
+ * The service needed by bfqq is measured
+ * quite precisely by bfqq->entity.service.
+ * Since bfqq does not enjoy device idling,
+ * bfqq->entity.service is equal to the number
+ * of sectors that the process associated with
+ * bfqq requested to read/write before waiting
+ * for request completions, or blocking for
+ * other reasons.
+ */
+ budget = max_t(int, bfqq->entity.service, min_budget);
+ break;
default:
return;
}
- } else
+ } else if (!bfq_bfqq_sync(bfqq))
/*
- * Async queues get always the maximum possible budget
- * (their ability to dispatch is limited by
- * @bfqd->bfq_max_budget_async_rq).
+ * Async queues get always the maximum possible
+ * budget, as for them we do not care about latency
+ * (in addition, their ability to dispatch is limited
+ * by the charging factor).
*/
budget = bfqd->bfq_max_budget;
@@ -1981,65 +2440,105 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
/*
- * Make sure that we have enough budget for the next request.
- * Since the finish time of the bfqq must be kept in sync with
- * the budget, be sure to call __bfq_bfqq_expire() after the
+ * If there is still backlog, then assign a new budget, making
+ * sure that it is large enough for the next request. Since
+ * the finish time of bfqq must be kept in sync with the
+ * budget, be sure to call __bfq_bfqq_expire() *after* this
* update.
+ *
+ * If there is no backlog, then no need to update the budget;
+ * it will be updated on the arrival of a new request.
*/
next_rq = bfqq->next_rq;
- if (next_rq)
+ if (next_rq) {
+ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
+ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
- else
- bfqq->entity.budget = bfqq->max_budget;
+ BUG_ON(!bfq_bfqq_busy(bfqq));
+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
+ }
bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
next_rq ? blk_rq_sectors(next_rq) : 0,
bfqq->entity.budget);
}
-static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
+static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
{
- unsigned long max_budget;
-
/*
* The max_budget calculated when autotuning is equal to the
- * amount of sectors transfered in timeout_sync at the
+ * amount of sectors transfered in timeout at the
* estimated peak rate.
*/
- max_budget = (unsigned long)(peak_rate * 1000 *
- timeout >> BFQ_RATE_SHIFT);
-
- return max_budget;
+ return bfqd->peak_rate * 1000 * jiffies_to_msecs(bfqd->bfq_timeout) >>
+ BFQ_RATE_SHIFT;
}
/*
- * In addition to updating the peak rate, checks whether the process
- * is "slow", and returns 1 if so. This slow flag is used, in addition
- * to the budget timeout, to reduce the amount of service provided to
- * seeky processes, and hence reduce their chances to lower the
- * throughput. See the code for more details.
+ * Update the read peak rate (quantity used for auto-tuning) as a
+ * function of the rate at which bfqq has been served, and check
+ * whether the process associated with bfqq is "slow". Return true if
+ * the process is slow. The slow flag is used, in addition to the
+ * budget timeout, to reduce the amount of service provided to seeky
+ * processes, and hence reduce their chances to lower the
+ * throughput. More details in the body of the function.
+ *
+ * An important observation is in order: with devices with internal
+ * queues, it is hard if ever possible to know when and for how long
+ * an I/O request is processed by the device (apart from the trivial
+ * I/O pattern where a new request is dispatched only after the
+ * previous one has been completed). This makes it hard to evaluate
+ * the real rate at which the I/O requests of each bfq_queue are
+ * served. In fact, for an I/O scheduler like BFQ, serving a
+ * bfq_queue means just dispatching its requests during its service
+ * slot, i.e., until the budget of the queue is exhausted, or the
+ * queue remains idle, or, finally, a timeout fires. But, during the
+ * service slot of a bfq_queue, the device may be still processing
+ * requests of bfq_queues served in previous service slots. On the
+ * opposite end, the requests of the in-service bfq_queue may be
+ * completed after the service slot of the queue finishes. Anyway,
+ * unless more sophisticated solutions are used (where possible), the
+ * sum of the sizes of the requests dispatched during the service slot
+ * of a bfq_queue is probably the only approximation available for
+ * the service received by the bfq_queue during its service slot. And,
+ * as written above, this sum is the quantity used in this function to
+ * evaluate the peak rate.
*/
static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
- bool compensate, enum bfqq_expiration reason)
+ bool compensate, enum bfqq_expiration reason,
+ unsigned long *delta_ms)
{
- u64 bw, usecs, expected, timeout;
- ktime_t delta;
+ u64 bw, bwdiv10, delta_usecs, delta_ms_tmp;
+ ktime_t delta_ktime;
int update = 0;
+ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
- if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
+ if (!bfq_bfqq_sync(bfqq))
return false;
if (compensate)
- delta = bfqd->last_idling_start;
+ delta_ktime = bfqd->last_idling_start;
else
- delta = ktime_get();
- delta = ktime_sub(delta, bfqd->last_budget_start);
- usecs = ktime_to_us(delta);
+ delta_ktime = ktime_get();
+ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
+ delta_usecs = ktime_to_us(delta_ktime);
/* Don't trust short/unrealistic values. */
- if (usecs < 100 || usecs >= LONG_MAX)
- return false;
+ if (delta_usecs < 1000 || delta_usecs >= LONG_MAX) {
+ if (blk_queue_nonrot(bfqd->queue))
+ *delta_ms = BFQ_MIN_TT; /* give same worst-case
+ guarantees as
+ idling for seeky
+ */
+ else /* Charge at least one seek */
+ *delta_ms = jiffies_to_msecs(bfq_slice_idle);
+ return slow;
+ }
+
+ delta_ms_tmp = delta_usecs;
+ do_div(delta_ms_tmp, 1000);
+ *delta_ms = delta_ms_tmp;
/*
* Calculate the bandwidth for the last slice. We use a 64 bit
@@ -2048,32 +2547,51 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
* and to avoid overflows.
*/
bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
- do_div(bw, (unsigned long)usecs);
-
- timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
+ do_div(bw, (unsigned long)delta_usecs);
+ bfq_log(bfqd, "measured bw = %llu sects/sec",
+ (1000000*bw)>>BFQ_RATE_SHIFT);
/*
* Use only long (> 20ms) intervals to filter out spikes for
* the peak rate estimation.
*/
- if (usecs > 20000) {
+ if (delta_usecs > 20000) {
+ bool fully_sequential = bfqq->seek_history == 0;
+ /*
+ * Soft real-time queues are not good candidates for
+ * evaluating bw, as they are likely to be slow even
+ * if sequential.
+ */
+ bool non_soft_rt = bfqq->wr_coeff == 1 ||
+ bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time;
+ bool consumed_large_budget =
+ reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
+ bfqq->entity.budget >= bfqd->bfq_max_budget * 2 / 3;
+ bool served_for_long_time =
+ reason == BFQ_BFQQ_BUDGET_TIMEOUT ||
+ consumed_large_budget;
+
+ BUG_ON(bfqq->seek_history == 0 &&
+ hweight32(bfqq->seek_history) != 0);
+
if (bw > bfqd->peak_rate ||
- (!BFQQ_SEEKY(bfqq) &&
- reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
- bfq_log(bfqd, "measured bw =%llu", bw);
+ (bfq_bfqq_sync(bfqq) && fully_sequential && non_soft_rt &&
+ served_for_long_time)) {
/*
* To smooth oscillations use a low-pass filter with
- * alpha=7/8, i.e.,
- * new_rate = (7/8) * old_rate + (1/8) * bw
+ * alpha=9/10, i.e.,
+ * new_rate = (9/10) * old_rate + (1/10) * bw
*/
- do_div(bw, 8);
- if (bw == 0)
- return 0;
- bfqd->peak_rate *= 7;
- do_div(bfqd->peak_rate, 8);
- bfqd->peak_rate += bw;
+ bwdiv10 = bw;
+ do_div(bwdiv10, 10);
+ if (bwdiv10 == 0)
+ return false; /* bw too low to be used */
+ bfqd->peak_rate *= 9;
+ do_div(bfqd->peak_rate, 10);
+ bfqd->peak_rate += bwdiv10;
update = 1;
- bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
+ bfq_log(bfqd, "new peak_rate = %llu sects/sec",
+ (1000000*bfqd->peak_rate)>>BFQ_RATE_SHIFT);
}
update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
@@ -2086,9 +2604,8 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int dev_type = blk_queue_nonrot(bfqd->queue);
if (bfqd->bfq_user_max_budget == 0) {
bfqd->bfq_max_budget =
- bfq_calc_max_budget(bfqd->peak_rate,
- timeout);
- bfq_log(bfqd, "new max_budget=%d",
+ bfq_calc_max_budget(bfqd);
+ bfq_log(bfqd, "new max_budget = %d",
bfqd->bfq_max_budget);
}
if (bfqd->device_speed == BFQ_BFQD_FAST &&
@@ -2102,38 +2619,35 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bfqd->RT_prod = R_fast[dev_type] *
T_fast[dev_type];
}
+ bfq_log(bfqd, "dev_speed_class = %d (%d sects/sec), "
+ "thresh %d setcs/sec",
+ bfqd->device_speed,
+ bfqd->device_speed == BFQ_BFQD_FAST ?
+ (1000000*R_fast[dev_type])>>BFQ_RATE_SHIFT :
+ (1000000*R_slow[dev_type])>>BFQ_RATE_SHIFT,
+ (1000000*device_speed_thresh[dev_type])>>
+ BFQ_RATE_SHIFT);
}
+ /*
+ * Caveat: processes doing IO in the slower disk zones
+ * tend to be slow(er) even if not seeky. In this
+ * respect, the estimated peak rate is likely to be an
+ * average over the disk surface. Accordingly, to not
+ * be too harsh with unlucky processes, a process is
+ * deemed slow only if its bw has been lower than half
+ * of the estimated peak rate.
+ */
+ slow = bw < bfqd->peak_rate / 2;
}
- /*
- * If the process has been served for a too short time
- * interval to let its possible sequential accesses prevail on
- * the initial seek time needed to move the disk head on the
- * first sector it requested, then give the process a chance
- * and for the moment return false.
- */
- if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
- return false;
-
- /*
- * A process is considered ``slow'' (i.e., seeky, so that we
- * cannot treat it fairly in the service domain, as it would
- * slow down too much the other processes) if, when a slice
- * ends for whatever reason, it has received service at a
- * rate that would not be high enough to complete the budget
- * before the budget timeout expiration.
- */
- expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
+ bfq_log_bfqq(bfqd, bfqq,
+ "update_peak_rate: bw %llu sect/s, peak rate %llu, "
+ "slow %d",
+ (1000000*bw)>>BFQ_RATE_SHIFT,
+ (1000000*bfqd->peak_rate)>>BFQ_RATE_SHIFT,
+ bw < bfqd->peak_rate / 2);
- /*
- * Caveat: processes doing IO in the slower disk zones will
- * tend to be slow(er) even if not seeky. And the estimated
- * peak rate will actually be an average over the disk
- * surface. Hence, to not be too harsh with unlucky processes,
- * we keep a budget/3 margin of safety before declaring a
- * process slow.
- */
- return expected > (4 * bfqq->entity.budget) / 3;
+ return slow;
}
/*
@@ -2191,6 +2705,15 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
+ bfq_log_bfqq(bfqd, bfqq,
+ "softrt_next_start: service_blkg %lu "
+ "soft_rate %u sects/sec"
+ "interval %u",
+ bfqq->service_from_backlogged,
+ bfqd->bfq_wr_max_softrt_rate,
+ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
+ bfqd->bfq_wr_max_softrt_rate));
+
return max(bfqq->last_idle_bklogged +
HZ * bfqq->service_from_backlogged /
bfqd->bfq_wr_max_softrt_rate,
@@ -2198,13 +2721,21 @@ static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
}
/*
- * Return the largest-possible time instant such that, for as long as possible,
- * the current time will be lower than this time instant according to the macro
- * time_is_before_jiffies().
+ * Return the farthest future time instant according to jiffies
+ * macros.
*/
-static unsigned long bfq_infinity_from_now(unsigned long now)
+static unsigned long bfq_greatest_from_now(void)
{
- return now + ULONG_MAX / 2;
+ return jiffies + MAX_JIFFY_OFFSET;
+}
+
+/*
+ * Return the farthest past time instant according to jiffies
+ * macros.
+ */
+static unsigned long bfq_smallest_from_now(void)
+{
+ return jiffies - MAX_JIFFY_OFFSET;
}
/**
@@ -2214,28 +2745,24 @@ static unsigned long bfq_infinity_from_now(unsigned long now)
* @compensate: if true, compensate for the time spent idling.
* @reason: the reason causing the expiration.
*
+ * If the process associated with bfqq does slow I/O (e.g., because it
+ * issues random requests), we charge bfqq with the time it has been
+ * in service instead of the service it has received (see
+ * bfq_bfqq_charge_time for details on how this goal is achieved). As
+ * a consequence, bfqq will typically get higher timestamps upon
+ * reactivation, and hence it will be rescheduled as if it had
+ * received more service than what it has actually received. In the
+ * end, bfqq receives less service in proportion to how slowly its
+ * associated process consumes its budgets (and hence how seriously it
+ * tends to lower the throughput). In addition, this time-charging
+ * strategy guarantees time fairness among slow processes. In
+ * contrast, if the process associated with bfqq is not slow, we
+ * charge bfqq exactly with the service it has received.
*
- * If the process associated to the queue is slow (i.e., seeky), or in
- * case of budget timeout, or, finally, if it is async, we
- * artificially charge it an entire budget (independently of the
- * actual service it received). As a consequence, the queue will get
- * higher timestamps than the correct ones upon reactivation, and
- * hence it will be rescheduled as if it had received more service
- * than what it actually received. In the end, this class of processes
- * will receive less service in proportion to how slowly they consume
- * their budgets (and hence how seriously they tend to lower the
- * throughput).
- *
- * In contrast, when a queue expires because it has been idling for
- * too much or because it exhausted its budget, we do not touch the
- * amount of service it has received. Hence when the queue will be
- * reactivated and its timestamps updated, the latter will be in sync
- * with the actual service received by the queue until expiration.
- *
- * Charging a full budget to the first type of queues and the exact
- * service to the others has the effect of using the WF2Q+ policy to
- * schedule the former on a timeslice basis, without violating the
- * service domain guarantees of the latter.
+ * Charging time to the first type of queues and the exact service to
+ * the other has the effect of using the WF2Q+ policy to schedule the
+ * former on a timeslice basis, without violating service domain
+ * guarantees among the latter.
*/
static void bfq_bfqq_expire(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
@@ -2243,40 +2770,53 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
enum bfqq_expiration reason)
{
bool slow;
+ unsigned long delta = 0;
+ struct bfq_entity *entity = &bfqq->entity;
+
BUG_ON(bfqq != bfqd->in_service_queue);
/*
- * Update disk peak rate for autotuning and check whether the
+ * Update device peak rate for autotuning and check whether the
* process is slow (see bfq_update_peak_rate).
*/
- slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
+ slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason, &delta);
/*
- * As above explained, 'punish' slow (i.e., seeky), timed-out
- * and async queues, to favor sequential sync workloads.
+ * Increase service_from_backlogged before next statement,
+ * because the possible next invocation of
+ * bfq_bfqq_charge_time would likely inflate
+ * entity->service. In contrast, service_from_backlogged must
+ * contain real service, to enable the soft real-time
+ * heuristic to correctly compute the bandwidth consumed by
+ * bfqq.
+ */
+ bfqq->service_from_backlogged += entity->service;
+
+ /*
+ * As above explained, charge slow (typically seeky) and
+ * timed-out queues with the time and not the service
+ * received, to favor sequential workloads.
*
- * Processes doing I/O in the slower disk zones will tend to be
- * slow(er) even if not seeky. Hence, since the estimated peak
- * rate is actually an average over the disk surface, these
- * processes may timeout just for bad luck. To avoid punishing
- * them we do not charge a full budget to a process that
- * succeeded in consuming at least 2/3 of its budget.
+ * Processes doing I/O in the slower disk zones will tend to
+ * be slow(er) even if not seeky. Therefore, since the
+ * estimated peak rate is actually an average over the disk
+ * surface, these processes may timeout just for bad luck. To
+ * avoid punishing them, do not charge time to processes that
+ * succeeded in consuming at least 2/3 of their budget. This
+ * allows BFQ to preserve enough elasticity to still perform
+ * bandwidth, and not time, distribution with little unlucky
+ * or quasi-sequential processes.
*/
- if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
- bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
- bfq_bfqq_charge_full_budget(bfqq);
+ if (bfqq->wr_coeff == 1 &&
+ (slow ||
+ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
+ bfq_bfqq_charge_time(bfqd, bfqq, delta);
- bfqq->service_from_backlogged += bfqq->entity.service;
-
- if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
- !bfq_bfqq_constantly_seeky(bfqq)) {
- bfq_mark_bfqq_constantly_seeky(bfqq);
- if (!blk_queue_nonrot(bfqd->queue))
- bfqd->const_seeky_busy_in_flight_queues++;
- }
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
if (reason == BFQ_BFQQ_TOO_IDLE &&
- bfqq->entity.service <= 2 * bfqq->entity.budget / 10 )
+ entity->service <= 2 * entity->budget / 10 )
bfq_clear_bfqq_IO_bound(bfqq);
if (bfqd->low_latency && bfqq->wr_coeff == 1)
@@ -2285,19 +2825,23 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
RB_EMPTY_ROOT(&bfqq->sort_list)) {
/*
- * If we get here, and there are no outstanding requests,
- * then the request pattern is isochronous (see the comments
- * to the function bfq_bfqq_softrt_next_start()). Hence we
- * can compute soft_rt_next_start. If, instead, the queue
- * still has outstanding requests, then we have to wait
- * for the completion of all the outstanding requests to
+ * If we get here, and there are no outstanding
+ * requests, then the request pattern is isochronous
+ * (see the comments on the function
+ * bfq_bfqq_softrt_next_start()). Thus we can compute
+ * soft_rt_next_start. If, instead, the queue still
+ * has outstanding requests, then we have to wait for
+ * the completion of all the outstanding requests to
* discover whether the request pattern is actually
* isochronous.
*/
- if (bfqq->dispatched == 0)
+ BUG_ON(bfqd->busy_queues < 1);
+ if (bfqq->dispatched == 0) {
bfqq->soft_rt_next_start =
bfq_bfqq_softrt_next_start(bfqd, bfqq);
- else {
+ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
+ bfqq->soft_rt_next_start);
+ } else {
/*
* The application is still waiting for the
* completion of one or more requests:
@@ -2314,7 +2858,7 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
* happened to be in the past.
*/
bfqq->soft_rt_next_start =
- bfq_infinity_from_now(jiffies);
+ bfq_greatest_from_now();
/*
* Schedule an update of soft_rt_next_start to when
* the task may be discovered to be isochronous.
@@ -2324,15 +2868,27 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
}
bfq_log_bfqq(bfqd, bfqq,
- "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
- slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
+ "expire (%d, slow %d, num_disp %d, idle_win %d, weight %d)",
+ reason, slow, bfqq->dispatched,
+ bfq_bfqq_idle_window(bfqq), entity->weight);
/*
* Increase, decrease or leave budget unchanged according to
* reason.
*/
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
+ BUG_ON(bfqq->next_rq == NULL &&
+ bfqq->entity.budget < bfqq->entity.service);
__bfq_bfqq_expire(bfqd, bfqq);
+
+ BUG_ON(!bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
+ !bfq_class_idle(bfqq));
+
+ if (!bfq_bfqq_busy(bfqq) &&
+ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
+ reason != BFQ_BFQQ_BUDGET_EXHAUSTED)
+ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
}
/*
@@ -2342,20 +2898,17 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
*/
static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
{
- if (bfq_bfqq_budget_new(bfqq) ||
- time_before(jiffies, bfqq->budget_timeout))
- return false;
- return true;
+ return time_is_before_eq_jiffies(bfqq->budget_timeout);
}
/*
- * If we expire a queue that is waiting for the arrival of a new
- * request, we may prevent the fictitious timestamp back-shifting that
- * allows the guarantees of the queue to be preserved (see [1] for
- * this tricky aspect). Hence we return true only if this condition
- * does not hold, or if the queue is slow enough to deserve only to be
- * kicked off for preserving a high throughput.
-*/
+ * If we expire a queue that is actively waiting (i.e., with the
+ * device idled) for the arrival of a new request, then we may incur
+ * the timestamp misalignment problem described in the body of the
+ * function __bfq_activate_entity. Hence we return true only if this
+ * condition does not hold, or if the queue is slow enough to deserve
+ * only to be kicked off for preserving a high throughput.
+ */
static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqq->bfqd, bfqq,
@@ -2397,10 +2950,12 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
bool idling_boosts_thr, idling_boosts_thr_without_issues,
- all_queues_seeky, on_hdd_and_not_all_queues_seeky,
idling_needed_for_service_guarantees,
asymmetric_scenario;
+ if (bfqd->strict_guarantees)
+ return true;
+
/*
* The next variable takes into account the cases where idling
* boosts the throughput.
@@ -2422,7 +2977,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
*/
idling_boosts_thr = !bfqd->hw_tag ||
(!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
- bfq_bfqq_idle_window(bfqq)) ;
+ bfq_bfqq_idle_window(bfqq));
/*
* The value of the next variable,
@@ -2463,74 +3018,27 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
bfqd->wr_busy_queues == 0;
/*
- * There are then two cases where idling must be performed not
+ * There is then a case where idling must be performed not
* for throughput concerns, but to preserve service
- * guarantees. In the description of these cases, we say, for
- * short, that a queue is sequential/random if the process
- * associated to the queue issues sequential/random requests
- * (in the second case the queue may be tagged as seeky or
- * even constantly_seeky).
- *
- * To introduce the first case, we note that, since
- * bfq_bfqq_idle_window(bfqq) is false if the device is
- * NCQ-capable and bfqq is random (see
- * bfq_update_idle_window()), then, from the above two
- * assignments it follows that
- * idling_boosts_thr_without_issues is false if the device is
- * NCQ-capable and bfqq is random. Therefore, for this case,
- * device idling would never be allowed if we used just
- * idling_boosts_thr_without_issues to decide whether to allow
- * it. And, beneficially, this would imply that throughput
- * would always be boosted also with random I/O on NCQ-capable
- * HDDs.
+ * guarantees.
*
- * But we must be careful on this point, to avoid an unfair
- * treatment for bfqq. In fact, because of the same above
- * assignments, idling_boosts_thr_without_issues is, on the
- * other hand, true if 1) the device is an HDD and bfqq is
- * sequential, and 2) there are no busy weight-raised
- * queues. As a consequence, if we used just
- * idling_boosts_thr_without_issues to decide whether to idle
- * the device, then with an HDD we might easily bump into a
- * scenario where queues that are sequential and I/O-bound
- * would enjoy idling, whereas random queues would not. The
- * latter might then get a low share of the device throughput,
- * simply because the former would get many requests served
- * after being set as in service, while the latter would not.
- *
- * To address this issue, we start by setting to true a
- * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
- * device is rotational and not all queues with pending or
- * in-flight requests are constantly seeky (i.e., there are
- * active sequential queues, and bfqq might then be mistreated
- * if it does not enjoy idling because it is random).
- */
- all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
- bfqd->busy_in_flight_queues ==
- bfqd->const_seeky_busy_in_flight_queues;
-
- on_hdd_and_not_all_queues_seeky =
- !blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
-
- /*
- * To introduce the second case where idling needs to be
- * performed to preserve service guarantees, we can note that
- * allowing the drive to enqueue more than one request at a
- * time, and hence delegating de facto final scheduling
- * decisions to the drive's internal scheduler, causes loss of
- * control on the actual request service order. In particular,
- * the critical situation is when requests from different
- * processes happens to be present, at the same time, in the
- * internal queue(s) of the drive. In such a situation, the
- * drive, by deciding the service order of the
- * internally-queued requests, does determine also the actual
- * throughput distribution among these processes. But the
- * drive typically has no notion or concern about per-process
- * throughput distribution, and makes its decisions only on a
- * per-request basis. Therefore, the service distribution
- * enforced by the drive's internal scheduler is likely to
- * coincide with the desired device-throughput distribution
- * only in a completely symmetric scenario where:
+ * To introduce this case, we can note that allowing the drive
+ * to enqueue more than one request at a time, and hence
+ * delegating de facto final scheduling decisions to the
+ * drive's internal scheduler, entails loss of control on the
+ * actual request service order. In particular, the critical
+ * situation is when requests from different processes happen
+ * to be present, at the same time, in the internal queue(s)
+ * of the drive. In such a situation, the drive, by deciding
+ * the service order of the internally-queued requests, does
+ * determine also the actual throughput distribution among
+ * these processes. But the drive typically has no notion or
+ * concern about per-process throughput distribution, and
+ * makes its decisions only on a per-request basis. Therefore,
+ * the service distribution enforced by the drive's internal
+ * scheduler is likely to coincide with the desired
+ * device-throughput distribution only in a completely
+ * symmetric scenario where:
* (i) each of these processes must get the same throughput as
* the others;
* (ii) all these processes have the same I/O pattern
@@ -2552,26 +3060,53 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
* words, only if sub-condition (i) holds, then idling is
* allowed, and the device tends to be prevented from queueing
* many requests, possibly of several processes. The reason
- * for not controlling also sub-condition (ii) is that, first,
- * in the case of an HDD, the asymmetry in terms of types of
- * I/O patterns is already taken in to account in the above
- * sentinel variable
- * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
- * flash-based device, we prefer however to privilege
- * throughput (and idling lowers throughput for this type of
- * devices), for the following reasons:
- * 1) differently from HDDs, the service time of random
- * requests is not orders of magnitudes lower than the service
- * time of sequential requests; thus, even if processes doing
- * sequential I/O get a preferential treatment with respect to
- * others doing random I/O, the consequences are not as
- * dramatic as with HDDs;
- * 2) if a process doing random I/O does need strong
- * throughput guarantees, it is hopefully already being
- * weight-raised, or the user is likely to have assigned it a
- * higher weight than the other processes (and thus
- * sub-condition (i) is likely to be false, which triggers
- * idling).
+ * for not controlling also sub-condition (ii) is that we
+ * exploit preemption to preserve guarantees in case of
+ * symmetric scenarios, even if (ii) does not hold, as
+ * explained in the next two paragraphs.
+ *
+ * Even if a queue, say Q, is expired when it remains idle, Q
+ * can still preempt the new in-service queue if the next
+ * request of Q arrives soon (see the comments on
+ * bfq_bfqq_update_budg_for_activation). If all queues and
+ * groups have the same weight, this form of preemption,
+ * combined with the hole-recovery heuristic described in the
+ * comments on function bfq_bfqq_update_budg_for_activation,
+ * are enough to preserve a correct bandwidth distribution in
+ * the mid term, even without idling. In fact, even if not
+ * idling allows the internal queues of the device to contain
+ * many requests, and thus to reorder requests, we can rather
+ * safely assume that the internal scheduler still preserves a
+ * minimum of mid-term fairness. The motivation for using
+ * preemption instead of idling is that, by not idling,
+ * service guarantees are preserved without minimally
+ * sacrificing throughput. In other words, both a high
+ * throughput and its desired distribution are obtained.
+ *
+ * More precisely, this preemption-based, idleless approach
+ * provides fairness in terms of IOPS, and not sectors per
+ * second. This can be seen with a simple example. Suppose
+ * that there are two queues with the same weight, but that
+ * the first queue receives requests of 8 sectors, while the
+ * second queue receives requests of 1024 sectors. In
+ * addition, suppose that each of the two queues contains at
+ * most one request at a time, which implies that each queue
+ * always remains idle after it is served. Finally, after
+ * remaining idle, each queue receives very quickly a new
+ * request. It follows that the two queues are served
+ * alternatively, preempting each other if needed. This
+ * implies that, although both queues have the same weight,
+ * the queue with large requests receives a service that is
+ * 1024/8 times as high as the service received by the other
+ * queue.
+ *
+ * On the other hand, device idling is performed, and thus
+ * pure sector-domain guarantees are provided, for the
+ * following queues, which are likely to need stronger
+ * throughput guarantees: weight-raised queues, and queues
+ * with a higher weight than other queues. When such queues
+ * are active, sub-condition (i) is false, which triggers
+ * device idling.
*
* According to the above considerations, the next variable is
* true (only) if sub-condition (i) holds. To compute the
@@ -2579,7 +3114,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
* the function bfq_symmetric_scenario(), but also check
* whether bfqq is being weight-raised, because
* bfq_symmetric_scenario() does not take into account also
- * weight-raised queues (see comments to
+ * weight-raised queues (see comments on
* bfq_weights_tree_add()).
*
* As a side note, it is worth considering that the above
@@ -2601,17 +3136,16 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
* bfqq. Such a case is when bfqq became active in a burst of
* queue activations. Queues that became active during a large
* burst benefit only from throughput, as discussed in the
- * comments to bfq_handle_burst. Thus, if bfqq became active
+ * comments on bfq_handle_burst. Thus, if bfqq became active
* in a burst and not idling the device maximizes throughput,
* then the device must no be idled, because not idling the
* device provides bfqq and all other queues in the burst with
- * maximum benefit. Combining this and the two cases above, we
- * can now establish when idling is actually needed to
- * preserve service guarantees.
+ * maximum benefit. Combining this and the above case, we can
+ * now establish when idling is actually needed to preserve
+ * service guarantees.
*/
idling_needed_for_service_guarantees =
- (on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
- !bfq_bfqq_in_large_burst(bfqq);
+ asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
/*
* We have now all the components we need to compute the return
@@ -2621,6 +3155,14 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
* 2) idling either boosts the throughput (without issues), or
* is necessary to preserve service guarantees.
*/
+ bfq_log_bfqq(bfqd, bfqq, "may_idle: sync %d idling_boosts_thr %d "
+ "wr_busy %d boosts %d IO-bound %d guar %d",
+ bfq_bfqq_sync(bfqq), idling_boosts_thr,
+ bfqd->wr_busy_queues,
+ idling_boosts_thr_without_issues,
+ bfq_bfqq_IO_bound(bfqq),
+ idling_needed_for_service_guarantees);
+
return bfq_bfqq_sync(bfqq) &&
(idling_boosts_thr_without_issues ||
idling_needed_for_service_guarantees);
@@ -2632,7 +3174,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
* 1) the queue must remain in service and cannot be expired, and
* 2) the device must be idled to wait for the possible arrival of a new
* request for the queue.
- * See the comments to the function bfq_bfqq_may_idle for the reasons
+ * See the comments on the function bfq_bfqq_may_idle for the reasons
* why performing device idling is the best choice to boost the throughput
* and preserve service guarantees when bfq_bfqq_may_idle itself
* returns true.
@@ -2698,9 +3240,7 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_idle_time(bfqq_group(bfqq));
-#endif
}
goto keep_queue;
}
@@ -2745,14 +3285,11 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
/*
- * If the queue was activated in a burst, or
- * too much time has elapsed from the beginning
- * of this weight-raising period, or the queue has
- * exceeded the acceptable number of cooperations,
- * then end weight raising.
+ * If the queue was activated in a burst, or too much
+ * time has elapsed from the beginning of this
+ * weight-raising period, then end weight raising.
*/
if (bfq_bfqq_in_large_burst(bfqq) ||
- bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
time_is_before_jiffies(bfqq->last_wr_start_finish +
bfqq->wr_cur_max_time)) {
bfqq->last_wr_start_finish = jiffies;
@@ -2811,13 +3348,29 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
*/
if (!bfqd->rq_in_driver)
bfq_schedule_dispatch(bfqd);
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
goto expire;
}
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
/* Finally, insert request into driver dispatch list. */
bfq_bfqq_served(bfqq, service_to_charge);
+
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+
bfq_dispatch_insert(bfqd->queue, rq);
+ /*
+ * If weight raising has to terminate for bfqq, then next
+ * function causes an immediate update of bfqq's weight,
+ * without waiting for next activation. As a consequence, on
+ * expiration, bfqq will be timestamped as if has never been
+ * weight-raised during this service slot, even if it has
+ * received part or even most of the service as a
+ * weight-raised queue. This inflates bfqq's timestamps, which
+ * is beneficial, as bfqq is then more willing to leave the
+ * device immediately to possible other weight-raised queues.
+ */
bfq_update_wr_data(bfqd, bfqq);
bfq_log_bfqq(bfqd, bfqq,
@@ -2833,9 +3386,7 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
bfqd->in_service_bic = RQ_BIC(rq);
}
- if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
- dispatched >= bfqd->bfq_max_budget_async_rq) ||
- bfq_class_idle(bfqq)))
+ if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
goto expire;
return dispatched;
@@ -2881,8 +3432,8 @@ static int bfq_forced_dispatch(struct bfq_data *bfqd)
st = bfq_entity_service_tree(&bfqq->entity);
dispatched += __bfq_forced_dispatch_bfqq(bfqq);
- bfqq->max_budget = bfq_max_budget(bfqd);
+ bfqq->max_budget = bfq_max_budget(bfqd);
bfq_forget_idle(st);
}
@@ -2895,9 +3446,9 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq;
- int max_dispatch;
bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
+
if (bfqd->busy_queues == 0)
return 0;
@@ -2908,21 +3459,7 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
if (!bfqq)
return 0;
- if (bfq_class_idle(bfqq))
- max_dispatch = 1;
-
- if (!bfq_bfqq_sync(bfqq))
- max_dispatch = bfqd->bfq_max_budget_async_rq;
-
- if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
- if (bfqd->busy_queues > 1)
- return 0;
- if (bfqq->dispatched >= 4 * max_dispatch)
- return 0;
- }
-
- if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
- return 0;
+ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
bfq_clear_bfqq_wait_request(bfqq);
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
@@ -2933,6 +3470,8 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
bfq_bfqq_sync(bfqq) ? "sync" : "async");
+ BUG_ON(bfqq->next_rq == NULL &&
+ bfqq->entity.budget < bfqq->entity.service);
return 1;
}
@@ -2944,23 +3483,22 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
*/
static void bfq_put_queue(struct bfq_queue *bfqq)
{
- struct bfq_data *bfqd = bfqq->bfqd;
#ifdef CONFIG_BFQ_GROUP_IOSCHED
struct bfq_group *bfqg = bfqq_group(bfqq);
#endif
- BUG_ON(atomic_read(&bfqq->ref) <= 0);
+ BUG_ON(bfqq->ref <= 0);
- bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
- atomic_read(&bfqq->ref));
- if (!atomic_dec_and_test(&bfqq->ref))
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
+ bfqq->ref--;
+ if (bfqq->ref)
return;
BUG_ON(rb_first(&bfqq->sort_list));
BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
BUG_ON(bfqq->entity.tree);
BUG_ON(bfq_bfqq_busy(bfqq));
- BUG_ON(bfqd->in_service_queue == bfqq);
+ BUG_ON(bfqq->bfqd->in_service_queue == bfqq);
if (bfq_bfqq_sync(bfqq))
/*
@@ -2973,7 +3511,7 @@ static void bfq_put_queue(struct bfq_queue *bfqq)
*/
hlist_del_init(&bfqq->burst_list_node);
- bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq);
kmem_cache_free(bfq_pool, bfqq);
#ifdef CONFIG_BFQ_GROUP_IOSCHED
@@ -3007,8 +3545,7 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_schedule_dispatch(bfqd);
}
- bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
- atomic_read(&bfqq->ref));
+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
bfq_put_cooperator(bfqq);
@@ -3019,26 +3556,7 @@ static void bfq_init_icq(struct io_cq *icq)
{
struct bfq_io_cq *bic = icq_to_bic(icq);
- bic->ttime.last_end_request = jiffies;
- /*
- * A newly created bic indicates that the process has just
- * started doing I/O, and is probably mapping into memory its
- * executable and libraries: it definitely needs weight raising.
- * There is however the possibility that the process performs,
- * for a while, I/O close to some other process. EQM intercepts
- * this behavior and may merge the queue corresponding to the
- * process with some other queue, BEFORE the weight of the queue
- * is raised. Merged queues are not weight-raised (they are assumed
- * to belong to processes that benefit only from high throughput).
- * If the merge is basically the consequence of an accident, then
- * the queue will be split soon and will get back its old weight.
- * It is then important to write down somewhere that this queue
- * does need weight raising, even if it did not make it to get its
- * weight raised before being merged. To this purpose, we overload
- * the field raising_time_left and assign 1 to it, to mark the queue
- * as needing weight raising.
- */
- bic->wr_time_left = 1;
+ bic->ttime.last_end_request = bfq_smallest_from_now();
}
static void bfq_exit_icq(struct io_cq *icq)
@@ -3046,21 +3564,21 @@ static void bfq_exit_icq(struct io_cq *icq)
struct bfq_io_cq *bic = icq_to_bic(icq);
struct bfq_data *bfqd = bic_to_bfqd(bic);
- if (bic->bfqq[BLK_RW_ASYNC]) {
- bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
- bic->bfqq[BLK_RW_ASYNC] = NULL;
+ if (bic_to_bfqq(bic, false)) {
+ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, false));
+ bic_set_bfqq(bic, NULL, false);
}
- if (bic->bfqq[BLK_RW_SYNC]) {
+ if (bic_to_bfqq(bic, true)) {
/*
* If the bic is using a shared queue, put the reference
* taken on the io_context when the bic started using a
* shared bfq_queue.
*/
- if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
+ if (bfq_bfqq_coop(bic_to_bfqq(bic, true)))
put_io_context(icq->ioc);
- bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
- bic->bfqq[BLK_RW_SYNC] = NULL;
+ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, true));
+ bic_set_bfqq(bic, NULL, true);
}
}
@@ -3068,7 +3586,8 @@ static void bfq_exit_icq(struct io_cq *icq)
* Update the entity prio values; note that the new values will not
* be used until the next (re)activation.
*/
-static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
+ struct bfq_io_cq *bic)
{
struct task_struct *tsk = current;
int ioprio_class;
@@ -3100,7 +3619,7 @@ static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *b
break;
}
- if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
+ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
printk(KERN_CRIT "bfq_set_next_ioprio_data: new_ioprio %d\n",
bfqq->new_ioprio);
BUG();
@@ -3108,45 +3627,40 @@ static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *b
bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
bfqq->entity.prio_changed = 1;
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "set_next_ioprio_data: bic_class %d prio %d class %d",
+ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
}
static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
{
- struct bfq_data *bfqd;
- struct bfq_queue *bfqq, *new_bfqq;
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
+ struct bfq_queue *bfqq;
unsigned long uninitialized_var(flags);
int ioprio = bic->icq.ioc->ioprio;
- bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
- &flags);
/*
* This condition may trigger on a newly created bic, be sure to
* drop the lock before returning.
*/
if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
- goto out;
+ return;
bic->ioprio = ioprio;
- bfqq = bic->bfqq[BLK_RW_ASYNC];
+ bfqq = bic_to_bfqq(bic, false);
if (bfqq) {
- new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
- GFP_ATOMIC);
- if (new_bfqq) {
- bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
- bfq_log_bfqq(bfqd, bfqq,
- "check_ioprio_change: bfqq %p %d",
- bfqq, atomic_read(&bfqq->ref));
- bfq_put_queue(bfqq);
- }
+ bfq_put_queue(bfqq);
+ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
+ bic_set_bfqq(bic, bfqq, false);
+ bfq_log_bfqq(bfqd, bfqq,
+ "check_ioprio_change: bfqq %p %d",
+ bfqq, bfqq->ref);
}
- bfqq = bic->bfqq[BLK_RW_SYNC];
+ bfqq = bic_to_bfqq(bic, true);
if (bfqq)
bfq_set_next_ioprio_data(bfqq, bic);
-
-out:
- bfq_put_bfqd_unlock(bfqd, &flags);
}
static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
@@ -3155,8 +3669,9 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
RB_CLEAR_NODE(&bfqq->entity.rb_node);
INIT_LIST_HEAD(&bfqq->fifo);
INIT_HLIST_NODE(&bfqq->burst_list_node);
+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
- atomic_set(&bfqq->ref, 0);
+ bfqq->ref = 0;
bfqq->bfqd = bfqd;
if (bic)
@@ -3166,6 +3681,7 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
if (!bfq_class_idle(bfqq))
bfq_mark_bfqq_idle_window(bfqq);
bfq_mark_bfqq_sync(bfqq);
+ bfq_mark_bfqq_just_created(bfqq);
} else
bfq_clear_bfqq_sync(bfqq);
bfq_mark_bfqq_IO_bound(bfqq);
@@ -3175,72 +3691,17 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bfqq->pid = pid;
bfqq->wr_coeff = 1;
- bfqq->last_wr_start_finish = 0;
+ bfqq->last_wr_start_finish = bfq_smallest_from_now();
+ bfqq->budget_timeout = bfq_smallest_from_now();
+ bfqq->split_time = bfq_smallest_from_now();
/*
* Set to the value for which bfqq will not be deemed as
* soft rt when it becomes backlogged.
*/
- bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
-}
-
-static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
- struct bio *bio, int is_sync,
- struct bfq_io_cq *bic,
- gfp_t gfp_mask)
-{
- struct bfq_group *bfqg;
- struct bfq_queue *bfqq, *new_bfqq = NULL;
- struct blkcg *blkcg;
+ bfqq->soft_rt_next_start = bfq_greatest_from_now();
-retry:
- rcu_read_lock();
-
- blkcg = bio_blkcg(bio);
- bfqg = bfq_find_alloc_group(bfqd, blkcg);
- /* bic always exists here */
- bfqq = bic_to_bfqq(bic, is_sync);
-
- /*
- * Always try a new alloc if we fall back to the OOM bfqq
- * originally, since it should just be a temporary situation.
- */
- if (!bfqq || bfqq == &bfqd->oom_bfqq) {
- bfqq = NULL;
- if (new_bfqq) {
- bfqq = new_bfqq;
- new_bfqq = NULL;
- } else if (gfpflags_allow_blocking(gfp_mask)) {
- rcu_read_unlock();
- spin_unlock_irq(bfqd->queue->queue_lock);
- new_bfqq = kmem_cache_alloc_node(bfq_pool,
- gfp_mask | __GFP_ZERO,
- bfqd->queue->node);
- spin_lock_irq(bfqd->queue->queue_lock);
- if (new_bfqq)
- goto retry;
- } else {
- bfqq = kmem_cache_alloc_node(bfq_pool,
- gfp_mask | __GFP_ZERO,
- bfqd->queue->node);
- }
-
- if (bfqq) {
- bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
- is_sync);
- bfq_init_entity(&bfqq->entity, bfqg);
- bfq_log_bfqq(bfqd, bfqq, "allocated");
- } else {
- bfqq = &bfqd->oom_bfqq;
- bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
- }
- }
-
- if (new_bfqq)
- kmem_cache_free(bfq_pool, new_bfqq);
-
- rcu_read_unlock();
-
- return bfqq;
+ /* first request is almost certainly seeky */
+ bfqq->seek_history = 1;
}
static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
@@ -3263,44 +3724,60 @@ static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
}
static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
- struct bio *bio, int is_sync,
- struct bfq_io_cq *bic, gfp_t gfp_mask)
+ struct bio *bio, bool is_sync,
+ struct bfq_io_cq *bic)
{
const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
struct bfq_queue **async_bfqq = NULL;
- struct bfq_queue *bfqq = NULL;
+ struct bfq_queue *bfqq;
+ struct bfq_group *bfqg;
- if (!is_sync) {
- struct blkcg *blkcg;
- struct bfq_group *bfqg;
+ rcu_read_lock();
+
+ bfqg = bfq_find_set_group(bfqd,bio_blkcg(bio));
+ if (!bfqg) {
+ bfqq = &bfqd->oom_bfqq;
+ goto out;
+ }
- rcu_read_lock();
- blkcg = bio_blkcg(bio);
- rcu_read_unlock();
- bfqg = bfq_find_alloc_group(bfqd, blkcg);
+ if (!is_sync) {
async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
ioprio);
bfqq = *async_bfqq;
+ if (bfqq)
+ goto out;
}
- if (!bfqq)
- bfqq = bfq_find_alloc_queue(bfqd, bio, is_sync, bic, gfp_mask);
+ bfqq = kmem_cache_alloc_node(bfq_pool, GFP_NOWAIT | __GFP_ZERO,
+ bfqd->queue->node);
+
+ if (bfqq) {
+ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
+ is_sync);
+ bfq_init_entity(&bfqq->entity, bfqg);
+ bfq_log_bfqq(bfqd, bfqq, "allocated");
+ } else {
+ bfqq = &bfqd->oom_bfqq;
+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
+ goto out;
+ }
/*
* Pin the queue now that it's allocated, scheduler exit will
* prune it.
*/
- if (!is_sync && !(*async_bfqq)) {
- atomic_inc(&bfqq->ref);
+ if (async_bfqq) {
+ bfqq->ref++;
bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
- bfqq, atomic_read(&bfqq->ref));
+ bfqq, bfqq->ref);
*async_bfqq = bfqq;
}
- atomic_inc(&bfqq->ref);
- bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
- atomic_read(&bfqq->ref));
+out:
+ bfqq->ref++;
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
+ rcu_read_unlock();
return bfqq;
}
@@ -3316,37 +3793,21 @@ static void bfq_update_io_thinktime(struct bfq_data *bfqd,
bic->ttime.ttime_samples;
}
-static void bfq_update_io_seektime(struct bfq_data *bfqd,
- struct bfq_queue *bfqq,
- struct request *rq)
-{
- sector_t sdist;
- u64 total;
- if (bfqq->last_request_pos < blk_rq_pos(rq))
- sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
- else
- sdist = bfqq->last_request_pos - blk_rq_pos(rq);
-
- /*
- * Don't allow the seek distance to get too large from the
- * odd fragment, pagein, etc.
- */
- if (bfqq->seek_samples == 0) /* first request, not really a seek */
- sdist = 0;
- else if (bfqq->seek_samples <= 60) /* second & third seek */
- sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
- else
- sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
-
- bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
- bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
- total = bfqq->seek_total + (bfqq->seek_samples/2);
- do_div(total, bfqq->seek_samples);
- bfqq->seek_mean = (sector_t)total;
+static void
+bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ struct request *rq)
+{
+ sector_t sdist = 0;
+ if (bfqq->last_request_pos) {
+ if (bfqq->last_request_pos < blk_rq_pos(rq))
+ sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
+ else
+ sdist = bfqq->last_request_pos - blk_rq_pos(rq);
+ }
- bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
- (u64)bfqq->seek_mean);
+ bfqq->seek_history <<= 1;
+ bfqq->seek_history |= (sdist > BFQQ_SEEK_THR);
}
/*
@@ -3364,7 +3825,8 @@ static void bfq_update_idle_window(struct bfq_data *bfqd,
return;
/* Idle window just restored, statistics are meaningless. */
- if (bfq_bfqq_just_split(bfqq))
+ if (time_is_after_eq_jiffies(bfqq->split_time +
+ bfqd->bfq_wr_min_idle_time))
return;
enable_idle = bfq_bfqq_idle_window(bfqq);
@@ -3404,22 +3866,13 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bfq_update_io_thinktime(bfqd, bic);
bfq_update_io_seektime(bfqd, bfqq, rq);
- if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
- bfq_clear_bfqq_constantly_seeky(bfqq);
- if (!blk_queue_nonrot(bfqd->queue)) {
- BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
- bfqd->const_seeky_busy_in_flight_queues--;
- }
- }
if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
!BFQQ_SEEKY(bfqq))
bfq_update_idle_window(bfqd, bfqq, bic);
- bfq_clear_bfqq_just_split(bfqq);
bfq_log_bfqq(bfqd, bfqq,
- "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
- bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
- (long long unsigned)bfqq->seek_mean);
+ "rq_enqueued: idle_window=%d (seeky %d)",
+ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
@@ -3433,14 +3886,15 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
* is small and the queue is not to be expired, then
* just exit.
*
- * In this way, if the disk is being idled to wait for
- * a new request from the in-service queue, we avoid
- * unplugging the device and committing the disk to serve
- * just a small request. On the contrary, we wait for
- * the block layer to decide when to unplug the device:
- * hopefully, new requests will be merged to this one
- * quickly, then the device will be unplugged and
- * larger requests will be dispatched.
+ * In this way, if the device is being idled to wait
+ * for a new request from the in-service queue, we
+ * avoid unplugging the device and committing the
+ * device to serve just a small request. On the
+ * contrary, we wait for the block layer to decide
+ * when to unplug the device: hopefully, new requests
+ * will be merged to this one quickly, then the device
+ * will be unplugged and larger requests will be
+ * dispatched.
*/
if (small_req && !budget_timeout)
return;
@@ -3453,9 +3907,7 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_idle_time(bfqq_group(bfqq));
-#endif
/*
* The queue is not empty, because a new request just
@@ -3499,27 +3951,19 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
*/
new_bfqq->allocated[rq_data_dir(rq)]++;
bfqq->allocated[rq_data_dir(rq)]--;
- atomic_inc(&new_bfqq->ref);
+ new_bfqq->ref++;
+ bfq_clear_bfqq_just_created(bfqq);
bfq_put_queue(bfqq);
if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
bfqq, new_bfqq);
rq->elv.priv[1] = new_bfqq;
bfqq = new_bfqq;
- } else
- bfq_bfqq_increase_failed_cooperations(bfqq);
+ }
}
bfq_add_request(rq);
- /*
- * Here a newly-created bfq_queue has already started a weight-raising
- * period: clear raising_time_left to prevent bfq_bfqq_save_state()
- * from assigning it a full weight-raising period. See the detailed
- * comments about this field in bfq_init_icq().
- */
- if (bfqq->bic)
- bfqq->bic->wr_time_left = 0;
rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
list_add_tail(&rq->queuelist, &bfqq->fifo);
@@ -3528,8 +3972,8 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
static void bfq_update_hw_tag(struct bfq_data *bfqd)
{
- bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
- bfqd->rq_in_driver);
+ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
+ bfqd->rq_in_driver);
if (bfqd->hw_tag == 1)
return;
@@ -3555,48 +3999,45 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
- bool sync = bfq_bfqq_sync(bfqq);
- bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
- blk_rq_sectors(rq), sync);
+ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left",
+ blk_rq_sectors(rq));
+ assert_spin_locked(bfqd->queue->queue_lock);
bfq_update_hw_tag(bfqd);
BUG_ON(!bfqd->rq_in_driver);
BUG_ON(!bfqq->dispatched);
bfqd->rq_in_driver--;
bfqq->dispatched--;
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqg_stats_update_completion(bfqq_group(bfqq),
rq_start_time_ns(rq),
rq_io_start_time_ns(rq), rq->cmd_flags);
-#endif
if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
+ /*
+ * Set budget_timeout (which we overload to store the
+ * time at which the queue remains with no backlog and
+ * no outstanding request; used by the weight-raising
+ * mechanism).
+ */
+ bfqq->budget_timeout = jiffies;
+
bfq_weights_tree_remove(bfqd, &bfqq->entity,
&bfqd->queue_weights_tree);
- if (!blk_queue_nonrot(bfqd->queue)) {
- BUG_ON(!bfqd->busy_in_flight_queues);
- bfqd->busy_in_flight_queues--;
- if (bfq_bfqq_constantly_seeky(bfqq)) {
- BUG_ON(!bfqd->
- const_seeky_busy_in_flight_queues);
- bfqd->const_seeky_busy_in_flight_queues--;
- }
- }
}
- if (sync) {
- bfqd->sync_flight--;
- RQ_BIC(rq)->ttime.last_end_request = jiffies;
- }
+ RQ_BIC(rq)->ttime.last_end_request = jiffies;
/*
- * If we are waiting to discover whether the request pattern of the
- * task associated with the queue is actually isochronous, and
- * both requisites for this condition to hold are satisfied, then
- * compute soft_rt_next_start (see the comments to the function
- * bfq_bfqq_softrt_next_start()).
+ * If we are waiting to discover whether the request pattern
+ * of the task associated with the queue is actually
+ * isochronous, and both requisites for this condition to hold
+ * are now satisfied, then compute soft_rt_next_start (see the
+ * comments on the function bfq_bfqq_softrt_next_start()). We
+ * schedule this delayed check when bfqq expires, if it still
+ * has in-flight requests.
*/
if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
RB_EMPTY_ROOT(&bfqq->sort_list))
@@ -3608,10 +4049,7 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
* or if we want to idle in case it has no pending requests.
*/
if (bfqd->in_service_queue == bfqq) {
- if (bfq_bfqq_budget_new(bfqq))
- bfq_set_budget_timeout(bfqd);
-
- if (bfq_bfqq_must_idle(bfqq)) {
+ if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
bfq_arm_slice_timer(bfqd);
goto out;
} else if (bfq_may_expire_for_budg_timeout(bfqq))
@@ -3682,14 +4120,14 @@ static void bfq_put_request(struct request *rq)
rq->elv.priv[1] = NULL;
bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
- bfqq, atomic_read(&bfqq->ref));
+ bfqq, bfqq->ref);
bfq_put_queue(bfqq);
}
}
/*
* Returns NULL if a new bfqq should be allocated, or the old bfqq if this
- * was the last process referring to said bfqq.
+ * was the last process referring to that bfqq.
*/
static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
@@ -3727,11 +4165,8 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
unsigned long flags;
bool split = false;
- might_sleep_if(gfpflags_allow_blocking(gfp_mask));
-
- bfq_check_ioprio_change(bic, bio);
-
spin_lock_irqsave(q->queue_lock, flags);
+ bfq_check_ioprio_change(bic, bio);
if (!bic)
goto queue_fail;
@@ -3741,23 +4176,47 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
new_queue:
bfqq = bic_to_bfqq(bic, is_sync);
if (!bfqq || bfqq == &bfqd->oom_bfqq) {
- bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
+ if (bfqq)
+ bfq_put_queue(bfqq);
+ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
+ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
+
bic_set_bfqq(bic, bfqq, is_sync);
if (split && is_sync) {
+ bfq_log_bfqq(bfqd, bfqq,
+ "set_request: was_in_list %d "
+ "was_in_large_burst %d "
+ "large burst in progress %d",
+ bic->was_in_burst_list,
+ bic->saved_in_large_burst,
+ bfqd->large_burst);
+
if ((bic->was_in_burst_list && bfqd->large_burst) ||
- bic->saved_in_large_burst)
+ bic->saved_in_large_burst) {
+ bfq_log_bfqq(bfqd, bfqq,
+ "set_request: marking in "
+ "large burst");
bfq_mark_bfqq_in_large_burst(bfqq);
- else {
- bfq_clear_bfqq_in_large_burst(bfqq);
- if (bic->was_in_burst_list)
- hlist_add_head(&bfqq->burst_list_node,
- &bfqd->burst_list);
+ } else {
+ bfq_log_bfqq(bfqd, bfqq,
+ "set_request: clearing in "
+ "large burst");
+ bfq_clear_bfqq_in_large_burst(bfqq);
+ if (bic->was_in_burst_list)
+ hlist_add_head(&bfqq->burst_list_node,
+ &bfqd->burst_list);
}
+ bfqq->split_time = jiffies;
}
} else {
/* If the queue was seeky for too long, break it apart. */
if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
+
+ /* Update bic before losing reference to bfqq */
+ if (bfq_bfqq_in_large_burst(bfqq))
+ bic->saved_in_large_burst = true;
+
bfqq = bfq_split_bfqq(bic, bfqq);
split = true;
if (!bfqq)
@@ -3766,9 +4225,8 @@ new_queue:
}
bfqq->allocated[rw]++;
- atomic_inc(&bfqq->ref);
- bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
- atomic_read(&bfqq->ref));
+ bfqq->ref++;
+ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq, bfqq->ref);
rq->elv.priv[0] = bic;
rq->elv.priv[1] = bfqq;
@@ -3783,7 +4241,6 @@ new_queue:
if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
bfqq->bic = bic;
if (split) {
- bfq_mark_bfqq_just_split(bfqq);
/*
* If the queue has just been split from a shared
* queue, restore the idle window and the possible
@@ -3793,6 +4250,9 @@ new_queue:
}
}
+ if (unlikely(bfq_bfqq_just_created(bfqq)))
+ bfq_handle_burst(bfqd, bfqq);
+
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
@@ -3872,6 +4332,7 @@ static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
cancel_work_sync(&bfqd->unplug_work);
}
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
struct bfq_queue **bfqq_ptr)
{
@@ -3880,9 +4341,9 @@ static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
if (bfqq) {
- bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
+ bfq_bfqq_move(bfqd, bfqq, root_group);
bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
- bfqq, atomic_read(&bfqq->ref));
+ bfqq, bfqq->ref);
bfq_put_queue(bfqq);
*bfqq_ptr = NULL;
}
@@ -3904,6 +4365,7 @@ static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
}
+#endif
static void bfq_exit_queue(struct elevator_queue *e)
{
@@ -3923,8 +4385,6 @@ static void bfq_exit_queue(struct elevator_queue *e)
bfq_shutdown_timer_wq(bfqd);
- synchronize_rcu();
-
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
#ifdef CONFIG_BFQ_GROUP_IOSCHED
@@ -3973,11 +4433,14 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
* will not attempt to free it.
*/
bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
- atomic_inc(&bfqd->oom_bfqq.ref);
+ bfqd->oom_bfqq.ref++;
bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
bfqd->oom_bfqq.entity.new_weight =
bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
+
+ /* oom_bfqq does not participate to bursts */
+ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
/*
* Trigger weight initialization, according to ioprio, at the
* oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
@@ -3996,9 +4459,6 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
goto out_free;
bfq_init_root_group(bfqd->root_group, bfqd);
bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
- bfqd->active_numerous_groups = 0;
-#endif
init_timer(&bfqd->idle_slice_timer);
bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
@@ -4023,20 +4483,19 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
bfqd->bfq_back_penalty = bfq_back_penalty;
bfqd->bfq_slice_idle = bfq_slice_idle;
bfqd->bfq_class_idle_last_service = 0;
- bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
- bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
- bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
+ bfqd->bfq_timeout = bfq_timeout;
- bfqd->bfq_coop_thresh = 2;
- bfqd->bfq_failed_cooperations = 7000;
bfqd->bfq_requests_within_timer = 120;
- bfqd->bfq_large_burst_thresh = 11;
- bfqd->bfq_burst_interval = msecs_to_jiffies(500);
+ bfqd->bfq_large_burst_thresh = 8;
+ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
bfqd->low_latency = true;
- bfqd->bfq_wr_coeff = 20;
+ /*
+ * Trade-off between responsiveness and fairness.
+ */
+ bfqd->bfq_wr_coeff = 30;
bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
bfqd->bfq_wr_max_time = 0;
bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
@@ -4048,16 +4507,15 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
* video.
*/
bfqd->wr_busy_queues = 0;
- bfqd->busy_in_flight_queues = 0;
- bfqd->const_seeky_busy_in_flight_queues = 0;
/*
- * Begin by assuming, optimistically, that the device peak rate is
- * equal to the highest reference rate.
+ * Begin by assuming, optimistically, that the device is a
+ * high-speed one, and that its peak rate is equal to 2/3 of
+ * the highest reference rate.
*/
bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
T_fast[blk_queue_nonrot(bfqd->queue)];
- bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
+ bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
bfqd->device_speed = BFQ_BFQD_FAST;
return 0;
@@ -4161,10 +4619,8 @@ SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
-SHOW_FUNCTION(bfq_max_budget_async_rq_show,
- bfqd->bfq_max_budget_async_rq, 0);
-SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
-SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
+SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
@@ -4199,10 +4655,6 @@ STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
INT_MAX, 0);
STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
-STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
- 1, INT_MAX, 0);
-STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
- INT_MAX, 1);
STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
@@ -4224,10 +4676,8 @@ static ssize_t bfq_weights_store(struct elevator_queue *e,
static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
{
- u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
-
if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
- return bfq_calc_max_budget(bfqd->peak_rate, timeout);
+ return bfq_calc_max_budget(bfqd);
else
return bfq_default_max_budget;
}
@@ -4252,6 +4702,10 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
return ret;
}
+/*
+ * Leaving this name to preserve name compatibility with cfq
+ * parameters, but this timeout is used for both sync and async.
+ */
static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
const char *page, size_t count)
{
@@ -4264,13 +4718,31 @@ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
else if (__data > INT_MAX)
__data = INT_MAX;
- bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
+ bfqd->bfq_timeout = msecs_to_jiffies(__data);
if (bfqd->bfq_user_max_budget == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
return ret;
}
+static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
+ const char *page, size_t count)
+{
+ struct bfq_data *bfqd = e->elevator_data;
+ unsigned long uninitialized_var(__data);
+ int ret = bfq_var_store(&__data, (page), count);
+
+ if (__data > 1)
+ __data = 1;
+ if (!bfqd->strict_guarantees && __data == 1
+ && bfqd->bfq_slice_idle < msecs_to_jiffies(8))
+ bfqd->bfq_slice_idle = msecs_to_jiffies(8);
+
+ bfqd->strict_guarantees = __data;
+
+ return ret;
+}
+
static ssize_t bfq_low_latency_store(struct elevator_queue *e,
const char *page, size_t count)
{
@@ -4297,9 +4769,8 @@ static struct elv_fs_entry bfq_attrs[] = {
BFQ_ATTR(back_seek_penalty),
BFQ_ATTR(slice_idle),
BFQ_ATTR(max_budget),
- BFQ_ATTR(max_budget_async_rq),
BFQ_ATTR(timeout_sync),
- BFQ_ATTR(timeout_async),
+ BFQ_ATTR(strict_guarantees),
BFQ_ATTR(low_latency),
BFQ_ATTR(wr_coeff),
BFQ_ATTR(wr_max_time),
@@ -4342,9 +4813,28 @@ static struct elevator_type iosched_bfq = {
.elevator_owner = THIS_MODULE,
};
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+static struct blkcg_policy blkcg_policy_bfq = {
+ .dfl_cftypes = bfq_blkg_files,
+ .legacy_cftypes = bfq_blkcg_legacy_files,
+
+ .cpd_alloc_fn = bfq_cpd_alloc,
+ .cpd_init_fn = bfq_cpd_init,
+ .cpd_bind_fn = bfq_cpd_init,
+ .cpd_free_fn = bfq_cpd_free,
+
+ .pd_alloc_fn = bfq_pd_alloc,
+ .pd_init_fn = bfq_pd_init,
+ .pd_offline_fn = bfq_pd_offline,
+ .pd_free_fn = bfq_pd_free,
+ .pd_reset_stats_fn = bfq_pd_reset_stats,
+};
+#endif
+
static int __init bfq_init(void)
{
int ret;
+ char msg[50] = "BFQ I/O-scheduler: v8r2";
/*
* Can be 0 on HZ < 1000 setups.
@@ -4352,9 +4842,6 @@ static int __init bfq_init(void)
if (bfq_slice_idle == 0)
bfq_slice_idle = 1;
- if (bfq_timeout_async == 0)
- bfq_timeout_async = 1;
-
#ifdef CONFIG_BFQ_GROUP_IOSCHED
ret = blkcg_policy_register(&blkcg_policy_bfq);
if (ret)
@@ -4370,23 +4857,34 @@ static int __init bfq_init(void)
* installed on the reference devices (see the comments before the
* definitions of the two arrays).
*/
- T_slow[0] = msecs_to_jiffies(2600);
- T_slow[1] = msecs_to_jiffies(1000);
- T_fast[0] = msecs_to_jiffies(5500);
- T_fast[1] = msecs_to_jiffies(2000);
+ T_slow[0] = msecs_to_jiffies(3500);
+ T_slow[1] = msecs_to_jiffies(1500);
+ T_fast[0] = msecs_to_jiffies(8000);
+ T_fast[1] = msecs_to_jiffies(3000);
/*
- * Thresholds that determine the switch between speed classes (see
- * the comments before the definition of the array).
+ * Thresholds that determine the switch between speed classes
+ * (see the comments before the definition of the array
+ * device_speed_thresh). These thresholds are biased towards
+ * transitions to the fast class. This is safer than the
+ * opposite bias. In fact, a wrong transition to the slow
+ * class results in short weight-raising periods, because the
+ * speed of the device then tends to be higher that the
+ * reference peak rate. On the opposite end, a wrong
+ * transition to the fast class tends to increase
+ * weight-raising periods, because of the opposite reason.
*/
- device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
- device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
+ device_speed_thresh[0] = (4 * R_slow[0]) / 3;
+ device_speed_thresh[1] = (4 * R_slow[1]) / 3;
ret = elv_register(&iosched_bfq);
if (ret)
goto err_pol_unreg;
- pr_info("BFQ I/O-scheduler: v7r11");
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ strcat(msg, " (with cgroups support)");
+#endif
+ pr_info("%s", msg);
return 0;