diff options
Diffstat (limited to 'Documentation/devicetree/bindings/net/fsl-tsec-phy.txt')
-rw-r--r-- | Documentation/devicetree/bindings/net/fsl-tsec-phy.txt | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt new file mode 100644 index 000000000..1e97532a0 --- /dev/null +++ b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt @@ -0,0 +1,147 @@ +* MDIO IO device + +The MDIO is a bus to which the PHY devices are connected. For each +device that exists on this bus, a child node should be created. See +the definition of the PHY node in booting-without-of.txt for an example +of how to define a PHY. + +Required properties: + - reg : Offset and length of the register set for the device + - compatible : Should define the compatible device type for the + mdio. Currently supported strings/devices are: + - "fsl,gianfar-tbi" + - "fsl,gianfar-mdio" + - "fsl,etsec2-tbi" + - "fsl,etsec2-mdio" + - "fsl,ucc-mdio" + - "fsl,fman-mdio" + When device_type is "mdio", the following strings are also considered: + - "gianfar" + - "ucc_geth_phy" + +Example: + + mdio@24520 { + reg = <24520 20>; + compatible = "fsl,gianfar-mdio"; + + ethernet-phy@0 { + ...... + }; + }; + +* TBI Internal MDIO bus + +As of this writing, every tsec is associated with an internal TBI PHY. +This PHY is accessed through the local MDIO bus. These buses are defined +similarly to the mdio buses, except they are compatible with "fsl,gianfar-tbi". +The TBI PHYs underneath them are similar to normal PHYs, but the reg property +is considered instructive, rather than descriptive. The reg property should +be chosen so it doesn't interfere with other PHYs on the bus. + +* Gianfar-compatible ethernet nodes + +Properties: + + - device_type : Should be "network" + - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC" + - compatible : Should be "gianfar" + - reg : Offset and length of the register set for the device + - interrupts : For FEC devices, the first interrupt is the device's + interrupt. For TSEC and eTSEC devices, the first interrupt is + transmit, the second is receive, and the third is error. + - phy-handle : See ethernet.txt file in the same directory. + - fixed-link : See fixed-link.txt in the same directory. + - phy-connection-type : See ethernet.txt file in the same directory. + This property is only really needed if the connection is of type + "rgmii-id", as all other connection types are detected by hardware. + - fsl,magic-packet : If present, indicates that the hardware supports + waking up via magic packet. + - bd-stash : If present, indicates that the hardware supports stashing + buffer descriptors in the L2. + - rx-stash-len : Denotes the number of bytes of a received buffer to stash + in the L2. + - rx-stash-idx : Denotes the index of the first byte from the received + buffer to stash in the L2. + +Example: + ethernet@24000 { + device_type = "network"; + model = "TSEC"; + compatible = "gianfar"; + reg = <0x24000 0x1000>; + local-mac-address = [ 00 E0 0C 00 73 00 ]; + interrupts = <29 2 30 2 34 2>; + interrupt-parent = <&mpic>; + phy-handle = <&phy0> + }; + +* Gianfar PTP clock nodes + +General Properties: + + - compatible Should be "fsl,etsec-ptp" + - reg Offset and length of the register set for the device + - interrupts There should be at least two interrupts. Some devices + have as many as four PTP related interrupts. + +Clock Properties: + + - fsl,cksel Timer reference clock source. + - fsl,tclk-period Timer reference clock period in nanoseconds. + - fsl,tmr-prsc Prescaler, divides the output clock. + - fsl,tmr-add Frequency compensation value. + - fsl,tmr-fiper1 Fixed interval period pulse generator. + - fsl,tmr-fiper2 Fixed interval period pulse generator. + - fsl,max-adj Maximum frequency adjustment in parts per billion. + + These properties set the operational parameters for the PTP + clock. You must choose these carefully for the clock to work right. + Here is how to figure good values: + + TimerOsc = selected reference clock MHz + tclk_period = desired clock period nanoseconds + NominalFreq = 1000 / tclk_period MHz + FreqDivRatio = TimerOsc / NominalFreq (must be greater that 1.0) + tmr_add = ceil(2^32 / FreqDivRatio) + OutputClock = NominalFreq / tmr_prsc MHz + PulseWidth = 1 / OutputClock microseconds + FiperFreq1 = desired frequency in Hz + FiperDiv1 = 1000000 * OutputClock / FiperFreq1 + tmr_fiper1 = tmr_prsc * tclk_period * FiperDiv1 - tclk_period + max_adj = 1000000000 * (FreqDivRatio - 1.0) - 1 + + The calculation for tmr_fiper2 is the same as for tmr_fiper1. The + driver expects that tmr_fiper1 will be correctly set to produce a 1 + Pulse Per Second (PPS) signal, since this will be offered to the PPS + subsystem to synchronize the Linux clock. + + Reference clock source is determined by the value, which is holded + in CKSEL bits in TMR_CTRL register. "fsl,cksel" property keeps the + value, which will be directly written in those bits, that is why, + according to reference manual, the next clock sources can be used: + + <0> - external high precision timer reference clock (TSEC_TMR_CLK + input is used for this purpose); + <1> - eTSEC system clock; + <2> - eTSEC1 transmit clock; + <3> - RTC clock input. + + When this attribute is not used, eTSEC system clock will serve as + IEEE 1588 timer reference clock. + +Example: + + ptp_clock@24E00 { + compatible = "fsl,etsec-ptp"; + reg = <0x24E00 0xB0>; + interrupts = <12 0x8 13 0x8>; + interrupt-parent = < &ipic >; + fsl,cksel = <1>; + fsl,tclk-period = <10>; + fsl,tmr-prsc = <100>; + fsl,tmr-add = <0x999999A4>; + fsl,tmr-fiper1 = <0x3B9AC9F6>; + fsl,tmr-fiper2 = <0x00018696>; + fsl,max-adj = <659999998>; + }; |