diff options
Diffstat (limited to 'Documentation/x86/x86_64')
-rw-r--r-- | Documentation/x86/x86_64/boot-options.txt | 2 | ||||
-rw-r--r-- | Documentation/x86/x86_64/fake-numa-for-cpusets | 4 | ||||
-rw-r--r-- | Documentation/x86/x86_64/machinecheck | 2 | ||||
-rw-r--r-- | Documentation/x86/x86_64/mm.txt | 20 |
4 files changed, 17 insertions, 11 deletions
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index 68ed3114c..0965a71f9 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -60,6 +60,8 @@ Machine check threshold to 1. Enabling this may make memory predictive failure analysis less effective if the bios sets thresholds for memory errors since we will not see details for all errors. + mce=recovery + Force-enable recoverable machine check code paths nomce (for compatibility with i386): same as mce=off diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets index 0f11d9bec..4b09f1883 100644 --- a/Documentation/x86/x86_64/fake-numa-for-cpusets +++ b/Documentation/x86/x86_64/fake-numa-for-cpusets @@ -8,7 +8,7 @@ assign them to cpusets and their attached tasks. This is a way of limiting the amount of system memory that are available to a certain class of tasks. For more information on the features of cpusets, see -Documentation/cgroups/cpusets.txt. +Documentation/cgroup-v1/cpusets.txt. There are a number of different configurations you can use for your needs. For more information on the numa=fake command line option and its various ways of configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt. @@ -33,7 +33,7 @@ A machine may be split as follows with "numa=fake=4*512," as reported by dmesg: On node 3 totalpages: 131072 Now following the instructions for mounting the cpusets filesystem from -Documentation/cgroups/cpusets.txt, you can assign fake nodes (i.e. contiguous memory +Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory address spaces) to individual cpusets: [root@xroads /]# mkdir exampleset diff --git a/Documentation/x86/x86_64/machinecheck b/Documentation/x86/x86_64/machinecheck index b1fb30273..d0648a74f 100644 --- a/Documentation/x86/x86_64/machinecheck +++ b/Documentation/x86/x86_64/machinecheck @@ -36,7 +36,7 @@ between all CPUs. check_interval How often to poll for corrected machine check errors, in seconds - (Note output is hexademical). Default 5 minutes. When the poller + (Note output is hexadecimal). Default 5 minutes. When the poller finds MCEs it triggers an exponential speedup (poll more often) on the polling interval. When the poller stops finding MCEs, it triggers an exponential backoff (poll less often) on the polling diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index 05712ac83..8c7dd5957 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -16,8 +16,10 @@ ffffec0000000000 - fffffc0000000000 (=44 bits) kasan shadow memory (16TB) ... unused hole ... ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks ... unused hole ... +ffffffef00000000 - ffffffff00000000 (=64 GB) EFI region mapping space +... unused hole ... ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 -ffffffffa0000000 - ffffffffff5fffff (=1525 MB) module mapping space +ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole @@ -29,14 +31,16 @@ vmalloc space is lazily synchronized into the different PML4 pages of the processes using the page fault handler, with init_level4_pgt as reference. -Current X86-64 implementations only support 40 bits of address space, -but we support up to 46 bits. This expands into MBZ space in the page tables. - -->trampoline_pgd: +Current X86-64 implementations support up to 46 bits of address space (64 TB), +which is our current limit. This expands into MBZ space in the page tables. -We map EFI runtime services in the aforementioned PGD in the virtual -range of 64Gb (arbitrarily set, can be raised if needed) +We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual +memory window (this size is arbitrary, it can be raised later if needed). +The mappings are not part of any other kernel PGD and are only available +during EFI runtime calls. -0xffffffef00000000 - 0xffffffff00000000 +Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all +physical memory, vmalloc/ioremap space and virtual memory map are randomized. +Their order is preserved but their base will be offset early at boot time. -Andi Kleen, Jul 2004 |