diff options
Diffstat (limited to 'drivers/firmware/efi/libstub')
| -rw-r--r-- | drivers/firmware/efi/libstub/Makefile | 62 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/arm-stub.c | 213 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/arm32-stub.c | 139 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/arm64-stub.c | 141 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/efi-stub-helper.c | 182 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/efistub.h | 21 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/fdt.c | 103 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/gop.c | 354 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/random.c | 143 | ||||
| -rw-r--r-- | drivers/firmware/efi/libstub/string.c | 57 |
10 files changed, 1281 insertions, 134 deletions
diff --git a/drivers/firmware/efi/libstub/Makefile b/drivers/firmware/efi/libstub/Makefile index 280bc0a63..c06945160 100644 --- a/drivers/firmware/efi/libstub/Makefile +++ b/drivers/firmware/efi/libstub/Makefile @@ -8,23 +8,40 @@ cflags-$(CONFIG_X86_32) := -march=i386 cflags-$(CONFIG_X86_64) := -mcmodel=small cflags-$(CONFIG_X86) += -m$(BITS) -D__KERNEL__ $(LINUX_INCLUDE) -O2 \ -fPIC -fno-strict-aliasing -mno-red-zone \ - -mno-mmx -mno-sse -DDISABLE_BRANCH_PROFILING + -mno-mmx -mno-sse cflags-$(CONFIG_ARM64) := $(subst -pg,,$(KBUILD_CFLAGS)) cflags-$(CONFIG_ARM) := $(subst -pg,,$(KBUILD_CFLAGS)) \ -fno-builtin -fpic -mno-single-pic-base -KBUILD_CFLAGS := $(cflags-y) \ +cflags-$(CONFIG_EFI_ARMSTUB) += -I$(srctree)/scripts/dtc/libfdt + +KBUILD_CFLAGS := $(cflags-y) -DDISABLE_BRANCH_PROFILING \ $(call cc-option,-ffreestanding) \ $(call cc-option,-fno-stack-protector) GCOV_PROFILE := n KASAN_SANITIZE := n +UBSAN_SANITIZE := n +OBJECT_FILES_NON_STANDARD := y + +# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in. +KCOV_INSTRUMENT := n + +lib-y := efi-stub-helper.o gop.o + +# include the stub's generic dependencies from lib/ when building for ARM/arm64 +arm-deps := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c sort.c + +$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE + $(call if_changed_rule,cc_o_c) -lib-y := efi-stub-helper.o -lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o +lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o \ + $(patsubst %.c,lib-%.o,$(arm-deps)) -CFLAGS_fdt.o += -I$(srctree)/scripts/dtc/libfdt/ +lib-$(CONFIG_ARM) += arm32-stub.o +lib-$(CONFIG_ARM64) += arm64-stub.o random.o +CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET) # # arm64 puts the stub in the kernel proper, which will unnecessarily retain all @@ -32,10 +49,35 @@ CFLAGS_fdt.o += -I$(srctree)/scripts/dtc/libfdt/ # So let's apply the __init annotations at the section level, by prefixing # the section names directly. This will ensure that even all the inline string # literals are covered. +# The fact that the stub and the kernel proper are essentially the same binary +# also means that we need to be extra careful to make sure that the stub does +# not rely on any absolute symbol references, considering that the virtual +# kernel mapping that the linker uses is not active yet when the stub is +# executing. So build all C dependencies of the EFI stub into libstub, and do +# a verification pass to see if any absolute relocations exist in any of the +# object files. # -extra-$(CONFIG_ARM64) := $(lib-y) -lib-$(CONFIG_ARM64) := $(patsubst %.o,%.init.o,$(lib-y)) +extra-$(CONFIG_EFI_ARMSTUB) := $(lib-y) +lib-$(CONFIG_EFI_ARMSTUB) := $(patsubst %.o,%.stub.o,$(lib-y)) -OBJCOPYFLAGS := --prefix-alloc-sections=.init -$(obj)/%.init.o: $(obj)/%.o FORCE - $(call if_changed,objcopy) +STUBCOPY_FLAGS-y := -R .debug* -R *ksymtab* -R *kcrctab* +STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \ + --prefix-symbols=__efistub_ +STUBCOPY_RELOC-$(CONFIG_ARM64) := R_AARCH64_ABS + +$(obj)/%.stub.o: $(obj)/%.o FORCE + $(call if_changed,stubcopy) + +quiet_cmd_stubcopy = STUBCPY $@ + cmd_stubcopy = if $(OBJCOPY) $(STUBCOPY_FLAGS-y) $< $@; then \ + $(OBJDUMP) -r $@ | grep $(STUBCOPY_RELOC-y) \ + && (echo >&2 "$@: absolute symbol references not allowed in the EFI stub"; \ + rm -f $@; /bin/false); else /bin/false; fi + +# +# ARM discards the .data section because it disallows r/w data in the +# decompressor. So move our .data to .data.efistub, which is preserved +# explicitly by the decompressor linker script. +# +STUBCOPY_FLAGS-$(CONFIG_ARM) += --rename-section .data=.data.efistub +STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS diff --git a/drivers/firmware/efi/libstub/arm-stub.c b/drivers/firmware/efi/libstub/arm-stub.c index e29560e6b..993aa5675 100644 --- a/drivers/firmware/efi/libstub/arm-stub.c +++ b/drivers/firmware/efi/libstub/arm-stub.c @@ -13,31 +13,56 @@ */ #include <linux/efi.h> +#include <linux/sort.h> #include <asm/efi.h> #include "efistub.h" -static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg) +bool __nokaslr; + +static int efi_get_secureboot(efi_system_table_t *sys_table_arg) { - static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID; - static efi_char16_t const var_name[] = { + static efi_char16_t const sb_var_name[] = { 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 }; + static efi_char16_t const sm_var_name[] = { + 'S', 'e', 't', 'u', 'p', 'M', 'o', 'd', 'e', 0 }; + efi_guid_t var_guid = EFI_GLOBAL_VARIABLE_GUID; efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable; - unsigned long size = sizeof(u8); - efi_status_t status; u8 val; + unsigned long size = sizeof(val); + efi_status_t status; + + status = f_getvar((efi_char16_t *)sb_var_name, (efi_guid_t *)&var_guid, + NULL, &size, &val); - status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid, + if (status != EFI_SUCCESS) + goto out_efi_err; + + if (val == 0) + return 0; + + status = f_getvar((efi_char16_t *)sm_var_name, (efi_guid_t *)&var_guid, NULL, &size, &val); + if (status != EFI_SUCCESS) + goto out_efi_err; + + if (val == 1) + return 0; + + return 1; + +out_efi_err: switch (status) { - case EFI_SUCCESS: - return val; case EFI_NOT_FOUND: return 0; + case EFI_DEVICE_ERROR: + return -EIO; + case EFI_SECURITY_VIOLATION: + return -EACCES; default: - return 1; + return -EINVAL; } } @@ -144,6 +169,25 @@ void efi_char16_printk(efi_system_table_t *sys_table_arg, out->output_string(out, str); } +static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg) +{ + efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; + efi_status_t status; + unsigned long size; + void **gop_handle = NULL; + struct screen_info *si = NULL; + + size = 0; + status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, + &gop_proto, NULL, &size, gop_handle); + if (status == EFI_BUFFER_TOO_SMALL) { + si = alloc_screen_info(sys_table_arg); + if (!si) + return NULL; + efi_setup_gop(sys_table_arg, si, &gop_proto, size); + } + return si; +} /* * This function handles the architcture specific differences between arm and @@ -182,6 +226,8 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; unsigned long reserve_addr = 0; unsigned long reserve_size = 0; + int secure_boot = 0; + struct screen_info *si; /* Check if we were booted by the EFI firmware */ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) @@ -189,6 +235,10 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, pr_efi(sys_table, "Booting Linux Kernel...\n"); + status = check_platform_features(sys_table); + if (status != EFI_SUCCESS) + goto fail; + /* * Get a handle to the loaded image protocol. This is used to get * information about the running image, such as size and the command @@ -206,14 +256,6 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, pr_efi_err(sys_table, "Failed to find DRAM base\n"); goto fail; } - status = handle_kernel_image(sys_table, image_addr, &image_size, - &reserve_addr, - &reserve_size, - dram_base, image); - if (status != EFI_SUCCESS) { - pr_efi_err(sys_table, "Failed to relocate kernel\n"); - goto fail; - } /* * Get the command line from EFI, using the LOADED_IMAGE @@ -223,19 +265,51 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size); if (!cmdline_ptr) { pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n"); - goto fail_free_image; + goto fail; + } + + /* check whether 'nokaslr' was passed on the command line */ + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { + static const u8 default_cmdline[] = CONFIG_CMDLINE; + const u8 *str, *cmdline = cmdline_ptr; + + if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) + cmdline = default_cmdline; + str = strstr(cmdline, "nokaslr"); + if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) + __nokaslr = true; + } + + si = setup_graphics(sys_table); + + status = handle_kernel_image(sys_table, image_addr, &image_size, + &reserve_addr, + &reserve_size, + dram_base, image); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Failed to relocate kernel\n"); + goto fail_free_cmdline; } status = efi_parse_options(cmdline_ptr); if (status != EFI_SUCCESS) pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n"); + secure_boot = efi_get_secureboot(sys_table); + if (secure_boot > 0) + pr_efi(sys_table, "UEFI Secure Boot is enabled.\n"); + + if (secure_boot < 0) { + pr_efi_err(sys_table, + "could not determine UEFI Secure Boot status.\n"); + } + /* * Unauthenticated device tree data is a security hazard, so * ignore 'dtb=' unless UEFI Secure Boot is disabled. */ - if (efi_secureboot_enabled(sys_table)) { - pr_efi(sys_table, "UEFI Secure Boot is enabled.\n"); + if (secure_boot != 0 && strstr(cmdline_ptr, "dtb=")) { + pr_efi(sys_table, "Ignoring DTB from command line.\n"); } else { status = handle_cmdline_files(sys_table, image, cmdline_ptr, "dtb=", @@ -243,7 +317,7 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, if (status != EFI_SUCCESS) { pr_efi_err(sys_table, "Failed to load device tree!\n"); - goto fail_free_cmdline; + goto fail_free_image; } } @@ -285,12 +359,12 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, efi_free(sys_table, initrd_size, initrd_addr); efi_free(sys_table, fdt_size, fdt_addr); -fail_free_cmdline: - efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); - fail_free_image: efi_free(sys_table, image_size, *image_addr); efi_free(sys_table, reserve_size, reserve_addr); +fail_free_cmdline: + free_screen_info(sys_table, si); + efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); fail: return EFI_ERROR; } @@ -302,8 +376,48 @@ fail: * The value chosen is the largest non-zero power of 2 suitable for this purpose * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can * be mapped efficiently. + * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, + * map everything below 1 GB. + */ +#define EFI_RT_VIRTUAL_BASE SZ_512M + +static int cmp_mem_desc(const void *l, const void *r) +{ + const efi_memory_desc_t *left = l, *right = r; + + return (left->phys_addr > right->phys_addr) ? 1 : -1; +} + +/* + * Returns whether region @left ends exactly where region @right starts, + * or false if either argument is NULL. + */ +static bool regions_are_adjacent(efi_memory_desc_t *left, + efi_memory_desc_t *right) +{ + u64 left_end; + + if (left == NULL || right == NULL) + return false; + + left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE; + + return left_end == right->phys_addr; +} + +/* + * Returns whether region @left and region @right have compatible memory type + * mapping attributes, and are both EFI_MEMORY_RUNTIME regions. */ -#define EFI_RT_VIRTUAL_BASE 0x40000000 +static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left, + efi_memory_desc_t *right) +{ + static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT | + EFI_MEMORY_WC | EFI_MEMORY_UC | + EFI_MEMORY_RUNTIME; + + return ((left->attribute ^ right->attribute) & mem_type_mask) == 0; +} /* * efi_get_virtmap() - create a virtual mapping for the EFI memory map @@ -317,33 +431,52 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, int *count) { u64 efi_virt_base = EFI_RT_VIRTUAL_BASE; - efi_memory_desc_t *out = runtime_map; + efi_memory_desc_t *in, *prev = NULL, *out = runtime_map; int l; - for (l = 0; l < map_size; l += desc_size) { - efi_memory_desc_t *in = (void *)memory_map + l; + /* + * To work around potential issues with the Properties Table feature + * introduced in UEFI 2.5, which may split PE/COFF executable images + * in memory into several RuntimeServicesCode and RuntimeServicesData + * regions, we need to preserve the relative offsets between adjacent + * EFI_MEMORY_RUNTIME regions with the same memory type attributes. + * The easiest way to find adjacent regions is to sort the memory map + * before traversing it. + */ + sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL); + + for (l = 0; l < map_size; l += desc_size, prev = in) { u64 paddr, size; + in = (void *)memory_map + l; if (!(in->attribute & EFI_MEMORY_RUNTIME)) continue; + paddr = in->phys_addr; + size = in->num_pages * EFI_PAGE_SIZE; + /* * Make the mapping compatible with 64k pages: this allows * a 4k page size kernel to kexec a 64k page size kernel and * vice versa. */ - paddr = round_down(in->phys_addr, SZ_64K); - size = round_up(in->num_pages * EFI_PAGE_SIZE + - in->phys_addr - paddr, SZ_64K); - - /* - * Avoid wasting memory on PTEs by choosing a virtual base that - * is compatible with section mappings if this region has the - * appropriate size and physical alignment. (Sections are 2 MB - * on 4k granule kernels) - */ - if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) - efi_virt_base = round_up(efi_virt_base, SZ_2M); + if (!regions_are_adjacent(prev, in) || + !regions_have_compatible_memory_type_attrs(prev, in)) { + + paddr = round_down(in->phys_addr, SZ_64K); + size += in->phys_addr - paddr; + + /* + * Avoid wasting memory on PTEs by choosing a virtual + * base that is compatible with section mappings if this + * region has the appropriate size and physical + * alignment. (Sections are 2 MB on 4k granule kernels) + */ + if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) + efi_virt_base = round_up(efi_virt_base, SZ_2M); + else + efi_virt_base = round_up(efi_virt_base, SZ_64K); + } in->virt_addr = efi_virt_base + in->phys_addr - paddr; efi_virt_base += size; diff --git a/drivers/firmware/efi/libstub/arm32-stub.c b/drivers/firmware/efi/libstub/arm32-stub.c new file mode 100644 index 000000000..e1f0b28e1 --- /dev/null +++ b/drivers/firmware/efi/libstub/arm32-stub.c @@ -0,0 +1,139 @@ +/* + * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/efi.h> +#include <asm/efi.h> + +efi_status_t check_platform_features(efi_system_table_t *sys_table_arg) +{ + int block; + + /* non-LPAE kernels can run anywhere */ + if (!IS_ENABLED(CONFIG_ARM_LPAE)) + return EFI_SUCCESS; + + /* LPAE kernels need compatible hardware */ + block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); + if (block < 5) { + pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n"); + return EFI_UNSUPPORTED; + } + return EFI_SUCCESS; +} + +static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID; + +struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg) +{ + struct screen_info *si; + efi_status_t status; + + /* + * Unlike on arm64, where we can directly fill out the screen_info + * structure from the stub, we need to allocate a buffer to hold + * its contents while we hand over to the kernel proper from the + * decompressor. + */ + status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA, + sizeof(*si), (void **)&si); + + if (status != EFI_SUCCESS) + return NULL; + + status = efi_call_early(install_configuration_table, + &screen_info_guid, si); + if (status == EFI_SUCCESS) + return si; + + efi_call_early(free_pool, si); + return NULL; +} + +void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si) +{ + if (!si) + return; + + efi_call_early(install_configuration_table, &screen_info_guid, NULL); + efi_call_early(free_pool, si); +} + +efi_status_t handle_kernel_image(efi_system_table_t *sys_table, + unsigned long *image_addr, + unsigned long *image_size, + unsigned long *reserve_addr, + unsigned long *reserve_size, + unsigned long dram_base, + efi_loaded_image_t *image) +{ + unsigned long nr_pages; + efi_status_t status; + /* Use alloc_addr to tranlsate between types */ + efi_physical_addr_t alloc_addr; + + /* + * Verify that the DRAM base address is compatible with the ARM + * boot protocol, which determines the base of DRAM by masking + * off the low 27 bits of the address at which the zImage is + * loaded. These assumptions are made by the decompressor, + * before any memory map is available. + */ + dram_base = round_up(dram_base, SZ_128M); + + /* + * Reserve memory for the uncompressed kernel image. This is + * all that prevents any future allocations from conflicting + * with the kernel. Since we can't tell from the compressed + * image how much DRAM the kernel actually uses (due to BSS + * size uncertainty) we allocate the maximum possible size. + * Do this very early, as prints can cause memory allocations + * that may conflict with this. + */ + alloc_addr = dram_base; + *reserve_size = MAX_UNCOMP_KERNEL_SIZE; + nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; + status = sys_table->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS, + EFI_LOADER_DATA, + nr_pages, &alloc_addr); + if (status != EFI_SUCCESS) { + *reserve_size = 0; + pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n"); + return status; + } + *reserve_addr = alloc_addr; + + /* + * Relocate the zImage, so that it appears in the lowest 128 MB + * memory window. + */ + *image_size = image->image_size; + status = efi_relocate_kernel(sys_table, image_addr, *image_size, + *image_size, + dram_base + MAX_UNCOMP_KERNEL_SIZE, 0); + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table, "Failed to relocate kernel.\n"); + efi_free(sys_table, *reserve_size, *reserve_addr); + *reserve_size = 0; + return status; + } + + /* + * Check to see if we were able to allocate memory low enough + * in memory. The kernel determines the base of DRAM from the + * address at which the zImage is loaded. + */ + if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) { + pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n"); + efi_free(sys_table, *reserve_size, *reserve_addr); + *reserve_size = 0; + efi_free(sys_table, *image_size, *image_addr); + *image_size = 0; + return EFI_LOAD_ERROR; + } + return EFI_SUCCESS; +} diff --git a/drivers/firmware/efi/libstub/arm64-stub.c b/drivers/firmware/efi/libstub/arm64-stub.c new file mode 100644 index 000000000..eae693eb3 --- /dev/null +++ b/drivers/firmware/efi/libstub/arm64-stub.c @@ -0,0 +1,141 @@ +/* + * Copyright (C) 2013, 2014 Linaro Ltd; <roy.franz@linaro.org> + * + * This file implements the EFI boot stub for the arm64 kernel. + * Adapted from ARM version by Mark Salter <msalter@redhat.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/efi.h> +#include <asm/efi.h> +#include <asm/sections.h> +#include <asm/sysreg.h> + +#include "efistub.h" + +extern bool __nokaslr; + +efi_status_t check_platform_features(efi_system_table_t *sys_table_arg) +{ + u64 tg; + + /* UEFI mandates support for 4 KB granularity, no need to check */ + if (IS_ENABLED(CONFIG_ARM64_4K_PAGES)) + return EFI_SUCCESS; + + tg = (read_cpuid(ID_AA64MMFR0_EL1) >> ID_AA64MMFR0_TGRAN_SHIFT) & 0xf; + if (tg != ID_AA64MMFR0_TGRAN_SUPPORTED) { + if (IS_ENABLED(CONFIG_ARM64_64K_PAGES)) + pr_efi_err(sys_table_arg, "This 64 KB granular kernel is not supported by your CPU\n"); + else + pr_efi_err(sys_table_arg, "This 16 KB granular kernel is not supported by your CPU\n"); + return EFI_UNSUPPORTED; + } + return EFI_SUCCESS; +} + +efi_status_t handle_kernel_image(efi_system_table_t *sys_table_arg, + unsigned long *image_addr, + unsigned long *image_size, + unsigned long *reserve_addr, + unsigned long *reserve_size, + unsigned long dram_base, + efi_loaded_image_t *image) +{ + efi_status_t status; + unsigned long kernel_size, kernel_memsize = 0; + void *old_image_addr = (void *)*image_addr; + unsigned long preferred_offset; + u64 phys_seed = 0; + + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { + if (!__nokaslr) { + status = efi_get_random_bytes(sys_table_arg, + sizeof(phys_seed), + (u8 *)&phys_seed); + if (status == EFI_NOT_FOUND) { + pr_efi(sys_table_arg, "EFI_RNG_PROTOCOL unavailable, no randomness supplied\n"); + } else if (status != EFI_SUCCESS) { + pr_efi_err(sys_table_arg, "efi_get_random_bytes() failed\n"); + return status; + } + } else { + pr_efi(sys_table_arg, "KASLR disabled on kernel command line\n"); + } + } + + /* + * The preferred offset of the kernel Image is TEXT_OFFSET bytes beyond + * a 2 MB aligned base, which itself may be lower than dram_base, as + * long as the resulting offset equals or exceeds it. + */ + preferred_offset = round_down(dram_base, MIN_KIMG_ALIGN) + TEXT_OFFSET; + if (preferred_offset < dram_base) + preferred_offset += MIN_KIMG_ALIGN; + + kernel_size = _edata - _text; + kernel_memsize = kernel_size + (_end - _edata); + + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && phys_seed != 0) { + /* + * If CONFIG_DEBUG_ALIGN_RODATA is not set, produce a + * displacement in the interval [0, MIN_KIMG_ALIGN) that + * is a multiple of the minimal segment alignment (SZ_64K) + */ + u32 mask = (MIN_KIMG_ALIGN - 1) & ~(SZ_64K - 1); + u32 offset = !IS_ENABLED(CONFIG_DEBUG_ALIGN_RODATA) ? + (phys_seed >> 32) & mask : TEXT_OFFSET; + + /* + * If KASLR is enabled, and we have some randomness available, + * locate the kernel at a randomized offset in physical memory. + */ + *reserve_size = kernel_memsize + offset; + status = efi_random_alloc(sys_table_arg, *reserve_size, + MIN_KIMG_ALIGN, reserve_addr, + (u32)phys_seed); + + *image_addr = *reserve_addr + offset; + } else { + /* + * Else, try a straight allocation at the preferred offset. + * This will work around the issue where, if dram_base == 0x0, + * efi_low_alloc() refuses to allocate at 0x0 (to prevent the + * address of the allocation to be mistaken for a FAIL return + * value or a NULL pointer). It will also ensure that, on + * platforms where the [dram_base, dram_base + TEXT_OFFSET) + * interval is partially occupied by the firmware (like on APM + * Mustang), we can still place the kernel at the address + * 'dram_base + TEXT_OFFSET'. + */ + if (*image_addr == preferred_offset) + return EFI_SUCCESS; + + *image_addr = *reserve_addr = preferred_offset; + *reserve_size = round_up(kernel_memsize, EFI_ALLOC_ALIGN); + + status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, + EFI_LOADER_DATA, + *reserve_size / EFI_PAGE_SIZE, + (efi_physical_addr_t *)reserve_addr); + } + + if (status != EFI_SUCCESS) { + *reserve_size = kernel_memsize + TEXT_OFFSET; + status = efi_low_alloc(sys_table_arg, *reserve_size, + MIN_KIMG_ALIGN, reserve_addr); + + if (status != EFI_SUCCESS) { + pr_efi_err(sys_table_arg, "Failed to relocate kernel\n"); + *reserve_size = 0; + return status; + } + *image_addr = *reserve_addr + TEXT_OFFSET; + } + memcpy((void *)*image_addr, old_image_addr, kernel_size); + + return EFI_SUCCESS; +} diff --git a/drivers/firmware/efi/libstub/efi-stub-helper.c b/drivers/firmware/efi/libstub/efi-stub-helper.c index f07d4a67f..aded10662 100644 --- a/drivers/firmware/efi/libstub/efi-stub-helper.c +++ b/drivers/firmware/efi/libstub/efi-stub-helper.c @@ -41,6 +41,8 @@ static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE; #define EFI_ALLOC_ALIGN EFI_PAGE_SIZE #endif +#define EFI_MMAP_NR_SLACK_SLOTS 8 + struct file_info { efi_file_handle_t *handle; u64 size; @@ -63,49 +65,62 @@ void efi_printk(efi_system_table_t *sys_table_arg, char *str) } } +static inline bool mmap_has_headroom(unsigned long buff_size, + unsigned long map_size, + unsigned long desc_size) +{ + unsigned long slack = buff_size - map_size; + + return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; +} + efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, - efi_memory_desc_t **map, - unsigned long *map_size, - unsigned long *desc_size, - u32 *desc_ver, - unsigned long *key_ptr) + struct efi_boot_memmap *map) { efi_memory_desc_t *m = NULL; efi_status_t status; unsigned long key; u32 desc_version; - *map_size = sizeof(*m) * 32; + *map->desc_size = sizeof(*m); + *map->map_size = *map->desc_size * 32; + *map->buff_size = *map->map_size; again: - /* - * Add an additional efi_memory_desc_t because we're doing an - * allocation which may be in a new descriptor region. - */ - *map_size += sizeof(*m); status = efi_call_early(allocate_pool, EFI_LOADER_DATA, - *map_size, (void **)&m); + *map->map_size, (void **)&m); if (status != EFI_SUCCESS) goto fail; - *desc_size = 0; + *map->desc_size = 0; key = 0; - status = efi_call_early(get_memory_map, map_size, m, - &key, desc_size, &desc_version); - if (status == EFI_BUFFER_TOO_SMALL) { + status = efi_call_early(get_memory_map, map->map_size, m, + &key, map->desc_size, &desc_version); + if (status == EFI_BUFFER_TOO_SMALL || + !mmap_has_headroom(*map->buff_size, *map->map_size, + *map->desc_size)) { efi_call_early(free_pool, m); + /* + * Make sure there is some entries of headroom so that the + * buffer can be reused for a new map after allocations are + * no longer permitted. Its unlikely that the map will grow to + * exceed this headroom once we are ready to trigger + * ExitBootServices() + */ + *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; + *map->buff_size = *map->map_size; goto again; } if (status != EFI_SUCCESS) efi_call_early(free_pool, m); - if (key_ptr && status == EFI_SUCCESS) - *key_ptr = key; - if (desc_ver && status == EFI_SUCCESS) - *desc_ver = desc_version; + if (map->key_ptr && status == EFI_SUCCESS) + *map->key_ptr = key; + if (map->desc_ver && status == EFI_SUCCESS) + *map->desc_ver = desc_version; fail: - *map = m; + *map->map = m; return status; } @@ -113,22 +128,31 @@ fail: unsigned long get_dram_base(efi_system_table_t *sys_table_arg) { efi_status_t status; - unsigned long map_size; + unsigned long map_size, buff_size; unsigned long membase = EFI_ERROR; struct efi_memory_map map; efi_memory_desc_t *md; + struct efi_boot_memmap boot_map; - status = efi_get_memory_map(sys_table_arg, (efi_memory_desc_t **)&map.map, - &map_size, &map.desc_size, NULL, NULL); + boot_map.map = (efi_memory_desc_t **)&map.map; + boot_map.map_size = &map_size; + boot_map.desc_size = &map.desc_size; + boot_map.desc_ver = NULL; + boot_map.key_ptr = NULL; + boot_map.buff_size = &buff_size; + + status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) return membase; map.map_end = map.map + map_size; - for_each_efi_memory_desc(&map, md) - if (md->attribute & EFI_MEMORY_WB) + for_each_efi_memory_desc_in_map(&map, md) { + if (md->attribute & EFI_MEMORY_WB) { if (membase > md->phys_addr) membase = md->phys_addr; + } + } efi_call_early(free_pool, map.map); @@ -142,15 +166,22 @@ efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr, unsigned long max) { - unsigned long map_size, desc_size; + unsigned long map_size, desc_size, buff_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; u64 max_addr = 0; int i; + struct efi_boot_memmap boot_map; - status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, - NULL, NULL); + boot_map.map = ↦ + boot_map.map_size = &map_size; + boot_map.desc_size = &desc_size; + boot_map.desc_ver = NULL; + boot_map.key_ptr = NULL; + boot_map.buff_size = &buff_size; + + status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) goto fail; @@ -228,14 +259,21 @@ efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr) { - unsigned long map_size, desc_size; + unsigned long map_size, desc_size, buff_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; int i; + struct efi_boot_memmap boot_map; + + boot_map.map = ↦ + boot_map.map_size = &map_size; + boot_map.desc_size = &desc_size; + boot_map.desc_ver = NULL; + boot_map.key_ptr = NULL; + boot_map.buff_size = &buff_size; - status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, - NULL, NULL); + status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) goto fail; @@ -649,6 +687,10 @@ static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) return dst; } +#ifndef MAX_CMDLINE_ADDRESS +#define MAX_CMDLINE_ADDRESS ULONG_MAX +#endif + /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. @@ -684,7 +726,8 @@ char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, options_bytes++; /* NUL termination */ - status = efi_low_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr); + status = efi_high_alloc(sys_table_arg, options_bytes, 0, + &cmdline_addr, MAX_CMDLINE_ADDRESS); if (status != EFI_SUCCESS) return NULL; @@ -697,3 +740,76 @@ char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, *cmd_line_len = options_bytes; return (char *)cmdline_addr; } + +/* + * Handle calling ExitBootServices according to the requirements set out by the + * spec. Obtains the current memory map, and returns that info after calling + * ExitBootServices. The client must specify a function to perform any + * processing of the memory map data prior to ExitBootServices. A client + * specific structure may be passed to the function via priv. The client + * function may be called multiple times. + */ +efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg, + void *handle, + struct efi_boot_memmap *map, + void *priv, + efi_exit_boot_map_processing priv_func) +{ + efi_status_t status; + + status = efi_get_memory_map(sys_table_arg, map); + + if (status != EFI_SUCCESS) + goto fail; + + status = priv_func(sys_table_arg, map, priv); + if (status != EFI_SUCCESS) + goto free_map; + + status = efi_call_early(exit_boot_services, handle, *map->key_ptr); + + if (status == EFI_INVALID_PARAMETER) { + /* + * The memory map changed between efi_get_memory_map() and + * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: + * EFI_BOOT_SERVICES.ExitBootServices we need to get the + * updated map, and try again. The spec implies one retry + * should be sufficent, which is confirmed against the EDK2 + * implementation. Per the spec, we can only invoke + * get_memory_map() and exit_boot_services() - we cannot alloc + * so efi_get_memory_map() cannot be used, and we must reuse + * the buffer. For all practical purposes, the headroom in the + * buffer should account for any changes in the map so the call + * to get_memory_map() is expected to succeed here. + */ + *map->map_size = *map->buff_size; + status = efi_call_early(get_memory_map, + map->map_size, + *map->map, + map->key_ptr, + map->desc_size, + map->desc_ver); + + /* exit_boot_services() was called, thus cannot free */ + if (status != EFI_SUCCESS) + goto fail; + + status = priv_func(sys_table_arg, map, priv); + /* exit_boot_services() was called, thus cannot free */ + if (status != EFI_SUCCESS) + goto fail; + + status = efi_call_early(exit_boot_services, handle, *map->key_ptr); + } + + /* exit_boot_services() was called, thus cannot free */ + if (status != EFI_SUCCESS) + goto fail; + + return EFI_SUCCESS; + +free_map: + efi_call_early(free_pool, *map->map); +fail: + return status; +} diff --git a/drivers/firmware/efi/libstub/efistub.h b/drivers/firmware/efi/libstub/efistub.h index e334a01cf..ee49cd23e 100644 --- a/drivers/firmware/efi/libstub/efistub.h +++ b/drivers/firmware/efi/libstub/efistub.h @@ -5,9 +5,15 @@ /* error code which can't be mistaken for valid address */ #define EFI_ERROR (~0UL) -#undef memcpy -#undef memset -#undef memmove +/* + * __init annotations should not be used in the EFI stub, since the code is + * either included in the decompressor (x86, ARM) where they have no effect, + * or the whole stub is __init annotated at the section level (arm64), by + * renaming the sections, in which case the __init annotation will be + * redundant, and will result in section names like .init.init.text, and our + * linker script does not expect that. + */ +#undef __init void efi_char16_printk(efi_system_table_t *, efi_char16_t *); @@ -47,4 +53,13 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, unsigned long desc_size, efi_memory_desc_t *runtime_map, int *count); +efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table, + unsigned long size, u8 *out); + +efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg, + unsigned long size, unsigned long align, + unsigned long *addr, unsigned long random_seed); + +efi_status_t check_platform_features(efi_system_table_t *sys_table_arg); + #endif diff --git a/drivers/firmware/efi/libstub/fdt.c b/drivers/firmware/efi/libstub/fdt.c index ef5d764e2..a6a93116a 100644 --- a/drivers/firmware/efi/libstub/fdt.c +++ b/drivers/firmware/efi/libstub/fdt.c @@ -24,7 +24,7 @@ efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, unsigned long map_size, unsigned long desc_size, u32 desc_ver) { - int node, prev, num_rsv; + int node, num_rsv; int status; u32 fdt_val32; u64 fdt_val64; @@ -54,28 +54,6 @@ efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, goto fdt_set_fail; /* - * Delete any memory nodes present. We must delete nodes which - * early_init_dt_scan_memory may try to use. - */ - prev = 0; - for (;;) { - const char *type; - int len; - - node = fdt_next_node(fdt, prev, NULL); - if (node < 0) - break; - - type = fdt_getprop(fdt, node, "device_type", &len); - if (type && strncmp(type, "memory", len) == 0) { - fdt_del_node(fdt, node); - continue; - } - - prev = node; - } - - /* * Delete all memory reserve map entries. When booting via UEFI, * kernel will use the UEFI memory map to find reserved regions. */ @@ -147,15 +125,20 @@ efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, if (status) goto fdt_set_fail; - /* - * Add kernel version banner so stub/kernel match can be - * verified. - */ - status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver", - linux_banner); - if (status) - goto fdt_set_fail; - + if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { + efi_status_t efi_status; + + efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64), + (u8 *)&fdt_val64); + if (efi_status == EFI_SUCCESS) { + status = fdt_setprop(fdt, node, "kaslr-seed", + &fdt_val64, sizeof(fdt_val64)); + if (status) + goto fdt_set_fail; + } else if (efi_status != EFI_NOT_FOUND) { + return efi_status; + } + } return EFI_SUCCESS; fdt_set_fail: @@ -169,6 +152,27 @@ fdt_set_fail: #define EFI_FDT_ALIGN EFI_PAGE_SIZE #endif +struct exit_boot_struct { + efi_memory_desc_t *runtime_map; + int *runtime_entry_count; +}; + +static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, + struct efi_boot_memmap *map, + void *priv) +{ + struct exit_boot_struct *p = priv; + /* + * Update the memory map with virtual addresses. The function will also + * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME + * entries so that we can pass it straight to SetVirtualAddressMap() + */ + efi_get_virtmap(*map->map, *map->map_size, *map->desc_size, + p->runtime_map, p->runtime_entry_count); + + return EFI_SUCCESS; +} + /* * Allocate memory for a new FDT, then add EFI, commandline, and * initrd related fields to the FDT. This routine increases the @@ -192,13 +196,22 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, unsigned long fdt_addr, unsigned long fdt_size) { - unsigned long map_size, desc_size; + unsigned long map_size, desc_size, buff_size; u32 desc_ver; unsigned long mmap_key; efi_memory_desc_t *memory_map, *runtime_map; unsigned long new_fdt_size; efi_status_t status; int runtime_entry_count = 0; + struct efi_boot_memmap map; + struct exit_boot_struct priv; + + map.map = &runtime_map; + map.map_size = &map_size; + map.desc_size = &desc_size; + map.desc_ver = &desc_ver; + map.key_ptr = &mmap_key; + map.buff_size = &buff_size; /* * Get a copy of the current memory map that we will use to prepare @@ -206,8 +219,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, * subsequent allocations adding entries, since they could not affect * the number of EFI_MEMORY_RUNTIME regions. */ - status = efi_get_memory_map(sys_table, &runtime_map, &map_size, - &desc_size, &desc_ver, &mmap_key); + status = efi_get_memory_map(sys_table, &map); if (status != EFI_SUCCESS) { pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n"); return status; @@ -216,6 +228,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, pr_efi(sys_table, "Exiting boot services and installing virtual address map...\n"); + map.map = &memory_map; /* * Estimate size of new FDT, and allocate memory for it. We * will allocate a bigger buffer if this ends up being too @@ -235,8 +248,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, * we can get the memory map key needed for * exit_boot_services(). */ - status = efi_get_memory_map(sys_table, &memory_map, &map_size, - &desc_size, &desc_ver, &mmap_key); + status = efi_get_memory_map(sys_table, &map); if (status != EFI_SUCCESS) goto fail_free_new_fdt; @@ -262,21 +274,16 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, sys_table->boottime->free_pool(memory_map); new_fdt_size += EFI_PAGE_SIZE; } else { - pr_efi_err(sys_table, "Unable to constuct new device tree.\n"); + pr_efi_err(sys_table, "Unable to construct new device tree.\n"); goto fail_free_mmap; } } - /* - * Update the memory map with virtual addresses. The function will also - * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME - * entries so that we can pass it straight into SetVirtualAddressMap() - */ - efi_get_virtmap(memory_map, map_size, desc_size, runtime_map, - &runtime_entry_count); - - /* Now we are ready to exit_boot_services.*/ - status = sys_table->boottime->exit_boot_services(handle, mmap_key); + sys_table->boottime->free_pool(memory_map); + priv.runtime_map = runtime_map; + priv.runtime_entry_count = &runtime_entry_count; + status = efi_exit_boot_services(sys_table, handle, &map, &priv, + exit_boot_func); if (status == EFI_SUCCESS) { efi_set_virtual_address_map_t *svam; diff --git a/drivers/firmware/efi/libstub/gop.c b/drivers/firmware/efi/libstub/gop.c new file mode 100644 index 000000000..932742e4c --- /dev/null +++ b/drivers/firmware/efi/libstub/gop.c @@ -0,0 +1,354 @@ +/* ----------------------------------------------------------------------- + * + * Copyright 2011 Intel Corporation; author Matt Fleming + * + * This file is part of the Linux kernel, and is made available under + * the terms of the GNU General Public License version 2. + * + * ----------------------------------------------------------------------- */ + +#include <linux/efi.h> +#include <linux/screen_info.h> +#include <asm/efi.h> +#include <asm/setup.h> + +static void find_bits(unsigned long mask, u8 *pos, u8 *size) +{ + u8 first, len; + + first = 0; + len = 0; + + if (mask) { + while (!(mask & 0x1)) { + mask = mask >> 1; + first++; + } + + while (mask & 0x1) { + mask = mask >> 1; + len++; + } + } + + *pos = first; + *size = len; +} + +static void +setup_pixel_info(struct screen_info *si, u32 pixels_per_scan_line, + struct efi_pixel_bitmask pixel_info, int pixel_format) +{ + if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) { + si->lfb_depth = 32; + si->lfb_linelength = pixels_per_scan_line * 4; + si->red_size = 8; + si->red_pos = 0; + si->green_size = 8; + si->green_pos = 8; + si->blue_size = 8; + si->blue_pos = 16; + si->rsvd_size = 8; + si->rsvd_pos = 24; + } else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) { + si->lfb_depth = 32; + si->lfb_linelength = pixels_per_scan_line * 4; + si->red_size = 8; + si->red_pos = 16; + si->green_size = 8; + si->green_pos = 8; + si->blue_size = 8; + si->blue_pos = 0; + si->rsvd_size = 8; + si->rsvd_pos = 24; + } else if (pixel_format == PIXEL_BIT_MASK) { + find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size); + find_bits(pixel_info.green_mask, &si->green_pos, + &si->green_size); + find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size); + find_bits(pixel_info.reserved_mask, &si->rsvd_pos, + &si->rsvd_size); + si->lfb_depth = si->red_size + si->green_size + + si->blue_size + si->rsvd_size; + si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8; + } else { + si->lfb_depth = 4; + si->lfb_linelength = si->lfb_width / 2; + si->red_size = 0; + si->red_pos = 0; + si->green_size = 0; + si->green_pos = 0; + si->blue_size = 0; + si->blue_pos = 0; + si->rsvd_size = 0; + si->rsvd_pos = 0; + } +} + +static efi_status_t +__gop_query32(efi_system_table_t *sys_table_arg, + struct efi_graphics_output_protocol_32 *gop32, + struct efi_graphics_output_mode_info **info, + unsigned long *size, u64 *fb_base) +{ + struct efi_graphics_output_protocol_mode_32 *mode; + efi_graphics_output_protocol_query_mode query_mode; + efi_status_t status; + unsigned long m; + + m = gop32->mode; + mode = (struct efi_graphics_output_protocol_mode_32 *)m; + query_mode = (void *)(unsigned long)gop32->query_mode; + + status = __efi_call_early(query_mode, (void *)gop32, mode->mode, size, + info); + if (status != EFI_SUCCESS) + return status; + + *fb_base = mode->frame_buffer_base; + return status; +} + +static efi_status_t +setup_gop32(efi_system_table_t *sys_table_arg, struct screen_info *si, + efi_guid_t *proto, unsigned long size, void **gop_handle) +{ + struct efi_graphics_output_protocol_32 *gop32, *first_gop; + unsigned long nr_gops; + u16 width, height; + u32 pixels_per_scan_line; + u32 ext_lfb_base; + u64 fb_base; + struct efi_pixel_bitmask pixel_info; + int pixel_format; + efi_status_t status = EFI_NOT_FOUND; + u32 *handles = (u32 *)(unsigned long)gop_handle; + int i; + + first_gop = NULL; + gop32 = NULL; + + nr_gops = size / sizeof(u32); + for (i = 0; i < nr_gops; i++) { + struct efi_graphics_output_mode_info *info = NULL; + efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID; + bool conout_found = false; + void *dummy = NULL; + efi_handle_t h = (efi_handle_t)(unsigned long)handles[i]; + u64 current_fb_base; + + status = efi_call_early(handle_protocol, h, + proto, (void **)&gop32); + if (status != EFI_SUCCESS) + continue; + + status = efi_call_early(handle_protocol, h, + &conout_proto, &dummy); + if (status == EFI_SUCCESS) + conout_found = true; + + status = __gop_query32(sys_table_arg, gop32, &info, &size, + ¤t_fb_base); + if (status == EFI_SUCCESS && (!first_gop || conout_found)) { + /* + * Systems that use the UEFI Console Splitter may + * provide multiple GOP devices, not all of which are + * backed by real hardware. The workaround is to search + * for a GOP implementing the ConOut protocol, and if + * one isn't found, to just fall back to the first GOP. + */ + width = info->horizontal_resolution; + height = info->vertical_resolution; + pixel_format = info->pixel_format; + pixel_info = info->pixel_information; + pixels_per_scan_line = info->pixels_per_scan_line; + fb_base = current_fb_base; + + /* + * Once we've found a GOP supporting ConOut, + * don't bother looking any further. + */ + first_gop = gop32; + if (conout_found) + break; + } + } + + /* Did we find any GOPs? */ + if (!first_gop) + goto out; + + /* EFI framebuffer */ + si->orig_video_isVGA = VIDEO_TYPE_EFI; + + si->lfb_width = width; + si->lfb_height = height; + si->lfb_base = fb_base; + + ext_lfb_base = (u64)(unsigned long)fb_base >> 32; + if (ext_lfb_base) { + si->capabilities |= VIDEO_CAPABILITY_64BIT_BASE; + si->ext_lfb_base = ext_lfb_base; + } + + si->pages = 1; + + setup_pixel_info(si, pixels_per_scan_line, pixel_info, pixel_format); + + si->lfb_size = si->lfb_linelength * si->lfb_height; + + si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS; +out: + return status; +} + +static efi_status_t +__gop_query64(efi_system_table_t *sys_table_arg, + struct efi_graphics_output_protocol_64 *gop64, + struct efi_graphics_output_mode_info **info, + unsigned long *size, u64 *fb_base) +{ + struct efi_graphics_output_protocol_mode_64 *mode; + efi_graphics_output_protocol_query_mode query_mode; + efi_status_t status; + unsigned long m; + + m = gop64->mode; + mode = (struct efi_graphics_output_protocol_mode_64 *)m; + query_mode = (void *)(unsigned long)gop64->query_mode; + + status = __efi_call_early(query_mode, (void *)gop64, mode->mode, size, + info); + if (status != EFI_SUCCESS) + return status; + + *fb_base = mode->frame_buffer_base; + return status; +} + +static efi_status_t +setup_gop64(efi_system_table_t *sys_table_arg, struct screen_info *si, + efi_guid_t *proto, unsigned long size, void **gop_handle) +{ + struct efi_graphics_output_protocol_64 *gop64, *first_gop; + unsigned long nr_gops; + u16 width, height; + u32 pixels_per_scan_line; + u32 ext_lfb_base; + u64 fb_base; + struct efi_pixel_bitmask pixel_info; + int pixel_format; + efi_status_t status = EFI_NOT_FOUND; + u64 *handles = (u64 *)(unsigned long)gop_handle; + int i; + + first_gop = NULL; + gop64 = NULL; + + nr_gops = size / sizeof(u64); + for (i = 0; i < nr_gops; i++) { + struct efi_graphics_output_mode_info *info = NULL; + efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID; + bool conout_found = false; + void *dummy = NULL; + efi_handle_t h = (efi_handle_t)(unsigned long)handles[i]; + u64 current_fb_base; + + status = efi_call_early(handle_protocol, h, + proto, (void **)&gop64); + if (status != EFI_SUCCESS) + continue; + + status = efi_call_early(handle_protocol, h, + &conout_proto, &dummy); + if (status == EFI_SUCCESS) + conout_found = true; + + status = __gop_query64(sys_table_arg, gop64, &info, &size, + ¤t_fb_base); + if (status == EFI_SUCCESS && (!first_gop || conout_found)) { + /* + * Systems that use the UEFI Console Splitter may + * provide multiple GOP devices, not all of which are + * backed by real hardware. The workaround is to search + * for a GOP implementing the ConOut protocol, and if + * one isn't found, to just fall back to the first GOP. + */ + width = info->horizontal_resolution; + height = info->vertical_resolution; + pixel_format = info->pixel_format; + pixel_info = info->pixel_information; + pixels_per_scan_line = info->pixels_per_scan_line; + fb_base = current_fb_base; + + /* + * Once we've found a GOP supporting ConOut, + * don't bother looking any further. + */ + first_gop = gop64; + if (conout_found) + break; + } + } + + /* Did we find any GOPs? */ + if (!first_gop) + goto out; + + /* EFI framebuffer */ + si->orig_video_isVGA = VIDEO_TYPE_EFI; + + si->lfb_width = width; + si->lfb_height = height; + si->lfb_base = fb_base; + + ext_lfb_base = (u64)(unsigned long)fb_base >> 32; + if (ext_lfb_base) { + si->capabilities |= VIDEO_CAPABILITY_64BIT_BASE; + si->ext_lfb_base = ext_lfb_base; + } + + si->pages = 1; + + setup_pixel_info(si, pixels_per_scan_line, pixel_info, pixel_format); + + si->lfb_size = si->lfb_linelength * si->lfb_height; + + si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS; +out: + return status; +} + +/* + * See if we have Graphics Output Protocol + */ +efi_status_t efi_setup_gop(efi_system_table_t *sys_table_arg, + struct screen_info *si, efi_guid_t *proto, + unsigned long size) +{ + efi_status_t status; + void **gop_handle = NULL; + + status = efi_call_early(allocate_pool, EFI_LOADER_DATA, + size, (void **)&gop_handle); + if (status != EFI_SUCCESS) + return status; + + status = efi_call_early(locate_handle, + EFI_LOCATE_BY_PROTOCOL, + proto, NULL, &size, gop_handle); + if (status != EFI_SUCCESS) + goto free_handle; + + if (efi_is_64bit()) { + status = setup_gop64(sys_table_arg, si, proto, size, + gop_handle); + } else { + status = setup_gop32(sys_table_arg, si, proto, size, + gop_handle); + } + +free_handle: + efi_call_early(free_pool, gop_handle); + return status; +} diff --git a/drivers/firmware/efi/libstub/random.c b/drivers/firmware/efi/libstub/random.c new file mode 100644 index 000000000..0c9f58c5b --- /dev/null +++ b/drivers/firmware/efi/libstub/random.c @@ -0,0 +1,143 @@ +/* + * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/efi.h> +#include <asm/efi.h> + +#include "efistub.h" + +struct efi_rng_protocol { + efi_status_t (*get_info)(struct efi_rng_protocol *, + unsigned long *, efi_guid_t *); + efi_status_t (*get_rng)(struct efi_rng_protocol *, + efi_guid_t *, unsigned long, u8 *out); +}; + +efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg, + unsigned long size, u8 *out) +{ + efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; + efi_status_t status; + struct efi_rng_protocol *rng; + + status = efi_call_early(locate_protocol, &rng_proto, NULL, + (void **)&rng); + if (status != EFI_SUCCESS) + return status; + + return rng->get_rng(rng, NULL, size, out); +} + +/* + * Return the number of slots covered by this entry, i.e., the number of + * addresses it covers that are suitably aligned and supply enough room + * for the allocation. + */ +static unsigned long get_entry_num_slots(efi_memory_desc_t *md, + unsigned long size, + unsigned long align) +{ + u64 start, end; + + if (md->type != EFI_CONVENTIONAL_MEMORY) + return 0; + + start = round_up(md->phys_addr, align); + end = round_down(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - size, + align); + + if (start > end) + return 0; + + return (end - start + 1) / align; +} + +/* + * The UEFI memory descriptors have a virtual address field that is only used + * when installing the virtual mapping using SetVirtualAddressMap(). Since it + * is unused here, we can reuse it to keep track of each descriptor's slot + * count. + */ +#define MD_NUM_SLOTS(md) ((md)->virt_addr) + +efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg, + unsigned long size, + unsigned long align, + unsigned long *addr, + unsigned long random_seed) +{ + unsigned long map_size, desc_size, total_slots = 0, target_slot; + unsigned long buff_size; + efi_status_t status; + efi_memory_desc_t *memory_map; + int map_offset; + struct efi_boot_memmap map; + + map.map = &memory_map; + map.map_size = &map_size; + map.desc_size = &desc_size; + map.desc_ver = NULL; + map.key_ptr = NULL; + map.buff_size = &buff_size; + + status = efi_get_memory_map(sys_table_arg, &map); + if (status != EFI_SUCCESS) + return status; + + if (align < EFI_ALLOC_ALIGN) + align = EFI_ALLOC_ALIGN; + + /* count the suitable slots in each memory map entry */ + for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { + efi_memory_desc_t *md = (void *)memory_map + map_offset; + unsigned long slots; + + slots = get_entry_num_slots(md, size, align); + MD_NUM_SLOTS(md) = slots; + total_slots += slots; + } + + /* find a random number between 0 and total_slots */ + target_slot = (total_slots * (u16)random_seed) >> 16; + + /* + * target_slot is now a value in the range [0, total_slots), and so + * it corresponds with exactly one of the suitable slots we recorded + * when iterating over the memory map the first time around. + * + * So iterate over the memory map again, subtracting the number of + * slots of each entry at each iteration, until we have found the entry + * that covers our chosen slot. Use the residual value of target_slot + * to calculate the randomly chosen address, and allocate it directly + * using EFI_ALLOCATE_ADDRESS. + */ + for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { + efi_memory_desc_t *md = (void *)memory_map + map_offset; + efi_physical_addr_t target; + unsigned long pages; + + if (target_slot >= MD_NUM_SLOTS(md)) { + target_slot -= MD_NUM_SLOTS(md); + continue; + } + + target = round_up(md->phys_addr, align) + target_slot * align; + pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; + + status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, + EFI_LOADER_DATA, pages, &target); + if (status == EFI_SUCCESS) + *addr = target; + break; + } + + efi_call_early(free_pool, memory_map); + + return status; +} diff --git a/drivers/firmware/efi/libstub/string.c b/drivers/firmware/efi/libstub/string.c new file mode 100644 index 000000000..09d5a0894 --- /dev/null +++ b/drivers/firmware/efi/libstub/string.c @@ -0,0 +1,57 @@ +/* + * Taken from: + * linux/lib/string.c + * + * Copyright (C) 1991, 1992 Linus Torvalds + */ + +#include <linux/types.h> +#include <linux/string.h> + +#ifndef __HAVE_ARCH_STRSTR +/** + * strstr - Find the first substring in a %NUL terminated string + * @s1: The string to be searched + * @s2: The string to search for + */ +char *strstr(const char *s1, const char *s2) +{ + size_t l1, l2; + + l2 = strlen(s2); + if (!l2) + return (char *)s1; + l1 = strlen(s1); + while (l1 >= l2) { + l1--; + if (!memcmp(s1, s2, l2)) + return (char *)s1; + s1++; + } + return NULL; +} +#endif + +#ifndef __HAVE_ARCH_STRNCMP +/** + * strncmp - Compare two length-limited strings + * @cs: One string + * @ct: Another string + * @count: The maximum number of bytes to compare + */ +int strncmp(const char *cs, const char *ct, size_t count) +{ + unsigned char c1, c2; + + while (count) { + c1 = *cs++; + c2 = *ct++; + if (c1 != c2) + return c1 < c2 ? -1 : 1; + if (!c1) + break; + count--; + } + return 0; +} +#endif |
