1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_ih.h"
#include "vid.h"
#include "oss/oss_3_0_1_d.h"
#include "oss/oss_3_0_1_sh_mask.h"
#include "bif/bif_5_1_d.h"
#include "bif/bif_5_1_sh_mask.h"
/*
* Interrupts
* Starting with r6xx, interrupts are handled via a ring buffer.
* Ring buffers are areas of GPU accessible memory that the GPU
* writes interrupt vectors into and the host reads vectors out of.
* There is a rptr (read pointer) that determines where the
* host is currently reading, and a wptr (write pointer)
* which determines where the GPU has written. When the
* pointers are equal, the ring is idle. When the GPU
* writes vectors to the ring buffer, it increments the
* wptr. When there is an interrupt, the host then starts
* fetching commands and processing them until the pointers are
* equal again at which point it updates the rptr.
*/
static void cz_ih_set_interrupt_funcs(struct amdgpu_device *adev);
/**
* cz_ih_enable_interrupts - Enable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Enable the interrupt ring buffer (VI).
*/
static void cz_ih_enable_interrupts(struct amdgpu_device *adev)
{
u32 ih_cntl = RREG32(mmIH_CNTL);
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, ENABLE_INTR, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
WREG32(mmIH_CNTL, ih_cntl);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
adev->irq.ih.enabled = true;
}
/**
* cz_ih_disable_interrupts - Disable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Disable the interrupt ring buffer (VI).
*/
static void cz_ih_disable_interrupts(struct amdgpu_device *adev)
{
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
u32 ih_cntl = RREG32(mmIH_CNTL);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, ENABLE_INTR, 0);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
WREG32(mmIH_CNTL, ih_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
adev->irq.ih.enabled = false;
adev->irq.ih.rptr = 0;
}
/**
* cz_ih_irq_init - init and enable the interrupt ring
*
* @adev: amdgpu_device pointer
*
* Allocate a ring buffer for the interrupt controller,
* enable the RLC, disable interrupts, enable the IH
* ring buffer and enable it (VI).
* Called at device load and reume.
* Returns 0 for success, errors for failure.
*/
static int cz_ih_irq_init(struct amdgpu_device *adev)
{
int ret = 0;
int rb_bufsz;
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
u64 wptr_off;
/* disable irqs */
cz_ih_disable_interrupts(adev);
/* setup interrupt control */
WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
/* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
*/
interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
/* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
/* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_ENABLE, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
/* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
/* set the writeback address whether it's enabled or not */
wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
/* Default settings for IH_CNTL (disabled at first) */
ih_cntl = RREG32(mmIH_CNTL);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, MC_VMID, 0);
if (adev->irq.msi_enabled)
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, RPTR_REARM, 1);
WREG32(mmIH_CNTL, ih_cntl);
pci_set_master(adev->pdev);
/* enable interrupts */
cz_ih_enable_interrupts(adev);
return ret;
}
/**
* cz_ih_irq_disable - disable interrupts
*
* @adev: amdgpu_device pointer
*
* Disable interrupts on the hw (VI).
*/
static void cz_ih_irq_disable(struct amdgpu_device *adev)
{
cz_ih_disable_interrupts(adev);
/* Wait and acknowledge irq */
mdelay(1);
}
/**
* cz_ih_get_wptr - get the IH ring buffer wptr
*
* @adev: amdgpu_device pointer
*
* Get the IH ring buffer wptr from either the register
* or the writeback memory buffer (VI). Also check for
* ring buffer overflow and deal with it.
* Used by cz_irq_process(VI).
* Returns the value of the wptr.
*/
static u32 cz_ih_get_wptr(struct amdgpu_device *adev)
{
u32 wptr, tmp;
wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
tmp = RREG32(mmIH_RB_CNTL);
tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
WREG32(mmIH_RB_CNTL, tmp);
}
return (wptr & adev->irq.ih.ptr_mask);
}
/**
* cz_ih_decode_iv - decode an interrupt vector
*
* @adev: amdgpu_device pointer
*
* Decodes the interrupt vector at the current rptr
* position and also advance the position.
*/
static void cz_ih_decode_iv(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
/* wptr/rptr are in bytes! */
u32 ring_index = adev->irq.ih.rptr >> 2;
uint32_t dw[4];
dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
entry->src_id = dw[0] & 0xff;
entry->src_data = dw[1] & 0xfffffff;
entry->ring_id = dw[2] & 0xff;
entry->vm_id = (dw[2] >> 8) & 0xff;
entry->pas_id = (dw[2] >> 16) & 0xffff;
/* wptr/rptr are in bytes! */
adev->irq.ih.rptr += 16;
}
/**
* cz_ih_set_rptr - set the IH ring buffer rptr
*
* @adev: amdgpu_device pointer
*
* Set the IH ring buffer rptr.
*/
static void cz_ih_set_rptr(struct amdgpu_device *adev)
{
WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
}
static int cz_ih_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret;
ret = amdgpu_irq_add_domain(adev);
if (ret)
return ret;
cz_ih_set_interrupt_funcs(adev);
return 0;
}
static int cz_ih_sw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_ih_ring_init(adev, 64 * 1024, false);
if (r)
return r;
r = amdgpu_irq_init(adev);
return r;
}
static int cz_ih_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_fini(adev);
amdgpu_ih_ring_fini(adev);
amdgpu_irq_remove_domain(adev);
return 0;
}
static int cz_ih_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = cz_ih_irq_init(adev);
if (r)
return r;
return 0;
}
static int cz_ih_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cz_ih_irq_disable(adev);
return 0;
}
static int cz_ih_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cz_ih_hw_fini(adev);
}
static int cz_ih_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cz_ih_hw_init(adev);
}
static bool cz_ih_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
return false;
return true;
}
static int cz_ih_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(mmSRBM_STATUS);
if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void cz_ih_print_status(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dev_info(adev->dev, "CZ IH registers\n");
dev_info(adev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(mmSRBM_STATUS));
dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(mmSRBM_STATUS2));
dev_info(adev->dev, " INTERRUPT_CNTL=0x%08X\n",
RREG32(mmINTERRUPT_CNTL));
dev_info(adev->dev, " INTERRUPT_CNTL2=0x%08X\n",
RREG32(mmINTERRUPT_CNTL2));
dev_info(adev->dev, " IH_CNTL=0x%08X\n",
RREG32(mmIH_CNTL));
dev_info(adev->dev, " IH_RB_CNTL=0x%08X\n",
RREG32(mmIH_RB_CNTL));
dev_info(adev->dev, " IH_RB_BASE=0x%08X\n",
RREG32(mmIH_RB_BASE));
dev_info(adev->dev, " IH_RB_WPTR_ADDR_LO=0x%08X\n",
RREG32(mmIH_RB_WPTR_ADDR_LO));
dev_info(adev->dev, " IH_RB_WPTR_ADDR_HI=0x%08X\n",
RREG32(mmIH_RB_WPTR_ADDR_HI));
dev_info(adev->dev, " IH_RB_RPTR=0x%08X\n",
RREG32(mmIH_RB_RPTR));
dev_info(adev->dev, " IH_RB_WPTR=0x%08X\n",
RREG32(mmIH_RB_WPTR));
}
static int cz_ih_soft_reset(void *handle)
{
u32 srbm_soft_reset = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & SRBM_STATUS__IH_BUSY_MASK)
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
SOFT_RESET_IH, 1);
if (srbm_soft_reset) {
cz_ih_print_status((void *)adev);
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
cz_ih_print_status((void *)adev);
}
return 0;
}
static int cz_ih_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
// TODO
return 0;
}
static int cz_ih_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
// TODO
return 0;
}
const struct amd_ip_funcs cz_ih_ip_funcs = {
.early_init = cz_ih_early_init,
.late_init = NULL,
.sw_init = cz_ih_sw_init,
.sw_fini = cz_ih_sw_fini,
.hw_init = cz_ih_hw_init,
.hw_fini = cz_ih_hw_fini,
.suspend = cz_ih_suspend,
.resume = cz_ih_resume,
.is_idle = cz_ih_is_idle,
.wait_for_idle = cz_ih_wait_for_idle,
.soft_reset = cz_ih_soft_reset,
.print_status = cz_ih_print_status,
.set_clockgating_state = cz_ih_set_clockgating_state,
.set_powergating_state = cz_ih_set_powergating_state,
};
static const struct amdgpu_ih_funcs cz_ih_funcs = {
.get_wptr = cz_ih_get_wptr,
.decode_iv = cz_ih_decode_iv,
.set_rptr = cz_ih_set_rptr
};
static void cz_ih_set_interrupt_funcs(struct amdgpu_device *adev)
{
if (adev->irq.ih_funcs == NULL)
adev->irq.ih_funcs = &cz_ih_funcs;
}
|