summaryrefslogtreecommitdiff
path: root/lib/wbt.c
blob: cc5a24270bf0a7870b762b91ade24a9163dccc55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
 * buffered writeback throttling. losely based on CoDel. We can't drop
 * packets for IO scheduling, so the logic is something like this:
 *
 * - Monitor latencies in a defined window of time.
 * - If the minimum latency in the above window exceeds some target, increment
 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
 *   window is then shrunk to 100 / sqrt(scaling step + 1).
 * - For any window where we don't have solid data on what the latencies
 *   look like, retain status quo.
 * - If latencies look good, decrement scaling step.
 *
 * Copyright (C) 2016 Jens Axboe
 *
 * Things that (may) need changing:
 *
 *	- Different scaling of background/normal/high priority writeback.
 *	  We may have to violate guarantees for max.
 *	- We can have mismatches between the stat window and our window.
 *
 */
#include <linux/kernel.h>
#include <linux/blk_types.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/wbt.h>

#define CREATE_TRACE_POINTS
#include <trace/events/wbt.h>

enum {
	/*
	 * Might need to be higher
	 */
	RWB_MAX_DEPTH	= 64,

	/*
	 * 100msec window
	 */
	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,

	/*
	 * Disregard stats, if we don't meet these minimums
	 */
	RWB_MIN_WRITE_SAMPLES	= 3,
	RWB_MIN_READ_SAMPLES	= 1,

	/*
	 * If we have this number of consecutive windows with not enough
	 * information to scale up or down, scale up.
	 */
	RWB_UNKNOWN_BUMP	= 5,
};

static inline bool rwb_enabled(struct rq_wb *rwb)
{
	return rwb && rwb->wb_normal != 0;
}

/*
 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
 * false if 'v' + 1 would be bigger than 'below'.
 */
static bool atomic_inc_below(atomic_t *v, int below)
{
	int cur = atomic_read(v);

	for (;;) {
		int old;

		if (cur >= below)
			return false;
		old = atomic_cmpxchg(v, cur, cur + 1);
		if (old == cur)
			break;
		cur = old;
	}

	return true;
}

static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
{
	if (rwb_enabled(rwb)) {
		const unsigned long cur = jiffies;

		if (cur != *var)
			*var = cur;
	}
}

void __wbt_done(struct rq_wb *rwb)
{
	int inflight, limit;

	inflight = atomic_dec_return(&rwb->inflight);

	/*
	 * wbt got disabled with IO in flight. Wake up any potential
	 * waiters, we don't have to do more than that.
	 */
	if (unlikely(!rwb_enabled(rwb))) {
		wake_up_all(&rwb->wait);
		return;
	}

	/*
	 * If the device does write back caching, drop further down
	 * before we wake people up.
	 */
	if (rwb->wc && !atomic_read(&rwb->bdi->wb.dirty_sleeping))
		limit = 0;
	else
		limit = rwb->wb_normal;

	/*
	 * Don't wake anyone up if we are above the normal limit.
	 */
	if (inflight && inflight >= limit)
		return;

	if (waitqueue_active(&rwb->wait)) {
		int diff = limit - inflight;

		if (!inflight || diff >= rwb->wb_background / 2)
			wake_up_nr(&rwb->wait, 1);
	}
}

/*
 * Called on completion of a request. Note that it's also called when
 * a request is merged, when the request gets freed.
 */
void wbt_done(struct rq_wb *rwb, struct wb_issue_stat *stat)
{
	if (!rwb)
		return;

	if (!wbt_tracked(stat)) {
		if (rwb->sync_cookie == stat) {
			rwb->sync_issue = 0;
			rwb->sync_cookie = NULL;
		}

		wb_timestamp(rwb, &rwb->last_comp);
	} else {
		WARN_ON_ONCE(stat == rwb->sync_cookie);
		__wbt_done(rwb);
		wbt_clear_tracked(stat);
	}
}

static void calc_wb_limits(struct rq_wb *rwb)
{
	unsigned int depth;

	if (!rwb->min_lat_nsec) {
		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
		return;
	}

	/*
	 * For QD=1 devices, this is a special case. It's important for those
	 * to have one request ready when one completes, so force a depth of
	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
	 * since the device can't have more than that in flight. If we're
	 * scaling down, then keep a setting of 1/1/1.
	 */
	if (rwb->queue_depth == 1) {
		if (rwb->scale_step)
			rwb->wb_max = rwb->wb_normal = 1;
		else
			rwb->wb_max = rwb->wb_normal = 2;
		rwb->wb_background = 1;
	} else {
		depth = min_t(unsigned int, RWB_MAX_DEPTH, rwb->queue_depth);

		/*
		 * Set our max/normal/bg queue depths based on how far
		 * we have scaled down (->scale_step).
		 */
		rwb->wb_max = 1 + ((depth - 1) >> min(31U, rwb->scale_step));
		rwb->wb_normal = (rwb->wb_max + 1) / 2;
		rwb->wb_background = (rwb->wb_max + 3) / 4;
	}
}

static bool inline stat_sample_valid(struct blk_rq_stat *stat)
{
	/*
	 * We need at least one read sample, and a minimum of
	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
	 * that it's writes impacting us, and not just some sole read on
	 * a device that is in a lower power state.
	 */
	return stat[0].nr_samples >= 1 &&
		stat[1].nr_samples >= RWB_MIN_WRITE_SAMPLES;
}

static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
{
	u64 now, issue = ACCESS_ONCE(rwb->sync_issue);

	if (!issue || !rwb->sync_cookie)
		return 0;

	now = ktime_to_ns(ktime_get());
	return now - issue;
}

enum {
	LAT_OK,
	LAT_UNKNOWN,
	LAT_EXCEEDED,
};

static int __latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
{
	u64 thislat;

	/*
	 * If our stored sync issue exceeds the window size, or it
	 * exceeds our min target AND we haven't logged any entries,
	 * flag the latency as exceeded. wbt works off completion latencies,
	 * but for a flooded device, a single sync IO can take a long time
	 * to complete after being issued. If this time exceeds our
	 * monitoring window AND we didn't see any other completions in that
	 * window, then count that sync IO as a violation of the latency.
	 */
	thislat = rwb_sync_issue_lat(rwb);
	if (thislat > rwb->cur_win_nsec ||
	    (thislat > rwb->min_lat_nsec && !stat[0].nr_samples)) {
		trace_wbt_lat(rwb->bdi, thislat);
		return LAT_EXCEEDED;
	}

	if (!stat_sample_valid(stat))
		return LAT_UNKNOWN;

	/*
	 * If the 'min' latency exceeds our target, step down.
	 */
	if (stat[0].min > rwb->min_lat_nsec) {
		trace_wbt_lat(rwb->bdi, stat[0].min);
		trace_wbt_stat(rwb->bdi, stat);
		return LAT_EXCEEDED;
	}

	if (rwb->scale_step)
		trace_wbt_stat(rwb->bdi, stat);

	return LAT_OK;
}

static int latency_exceeded(struct rq_wb *rwb)
{
	struct blk_rq_stat stat[2];

	rwb->stat_ops->get(rwb->ops_data, stat);
	return __latency_exceeded(rwb, stat);
}

static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
{
	trace_wbt_step(rwb->bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
}

static void scale_up(struct rq_wb *rwb)
{
	/*
	 * If we're at 0, we can't go lower.
	 */
	if (!rwb->scale_step)
		return;

	rwb->scale_step--;
	rwb->unknown_cnt = 0;
	rwb->stat_ops->clear(rwb->ops_data);
	calc_wb_limits(rwb);

	if (waitqueue_active(&rwb->wait))
		wake_up_all(&rwb->wait);

	rwb_trace_step(rwb, "step up");
}

static void scale_down(struct rq_wb *rwb)
{
	/*
	 * Stop scaling down when we've hit the limit. This also prevents
	 * ->scale_step from going to crazy values, if the device can't
	 * keep up.
	 */
	if (rwb->wb_max == 1)
		return;

	rwb->scale_step++;
	rwb->unknown_cnt = 0;
	rwb->stat_ops->clear(rwb->ops_data);
	calc_wb_limits(rwb);
	rwb_trace_step(rwb, "step down");
}

static void rwb_arm_timer(struct rq_wb *rwb)
{
	unsigned long expires;

	/*
	 * We should speed this up, using some variant of a fast integer
	 * inverse square root calculation. Since we only do this for
	 * every window expiration, it's not a huge deal, though.
	 */
	rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
					int_sqrt((rwb->scale_step + 1) << 8));
	expires = jiffies + nsecs_to_jiffies(rwb->cur_win_nsec);
	mod_timer(&rwb->window_timer, expires);
}

static void wb_timer_fn(unsigned long data)
{
	struct rq_wb *rwb = (struct rq_wb *) data;
	int status;

	/*
	 * If we exceeded the latency target, step down. If we did not,
	 * step one level up. If we don't know enough to say either exceeded
	 * or ok, then don't do anything.
	 */
	status = latency_exceeded(rwb);
	switch (status) {
	case LAT_EXCEEDED:
		scale_down(rwb);
		break;
	case LAT_OK:
		scale_up(rwb);
		break;
	case LAT_UNKNOWN:
		/*
		 * We had no read samples, start bumping up the write
		 * depth slowly
		 */
		if (++rwb->unknown_cnt >= RWB_UNKNOWN_BUMP)
			scale_up(rwb);
		break;
	default:
		break;
	}

	/*
	 * Re-arm timer, if we have IO in flight
	 */
	if (rwb->scale_step || atomic_read(&rwb->inflight))
		rwb_arm_timer(rwb);
}

void wbt_update_limits(struct rq_wb *rwb)
{
	rwb->scale_step = 0;
	calc_wb_limits(rwb);

	if (waitqueue_active(&rwb->wait))
		wake_up_all(&rwb->wait);
}

static bool close_io(struct rq_wb *rwb)
{
	const unsigned long now = jiffies;

	return time_before(now, rwb->last_issue + HZ / 10) ||
		time_before(now, rwb->last_comp + HZ / 10);
}

#define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)

static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
{
	unsigned int limit;

	/*
	 * At this point we know it's a buffered write. If REQ_SYNC is
	 * set, then it's WB_SYNC_ALL writeback, and we'll use the max
	 * limit for that. If the write is marked as a background write,
	 * then use the idle limit, or go to normal if we haven't had
	 * competing IO for a bit.
	 */
	if ((rw & REQ_HIPRIO) || atomic_read(&rwb->bdi->wb.dirty_sleeping))
		limit = rwb->wb_max;
	else if ((rw & REQ_BG) || close_io(rwb)) {
		/*
		 * If less than 100ms since we completed unrelated IO,
		 * limit us to half the depth for background writeback.
		 */
		limit = rwb->wb_background;
	} else
		limit = rwb->wb_normal;

	return limit;
}

static inline bool may_queue(struct rq_wb *rwb, unsigned long rw)
{
	/*
	 * inc it here even if disabled, since we'll dec it at completion.
	 * this only happens if the task was sleeping in __wbt_wait(),
	 * and someone turned it off at the same time.
	 */
	if (!rwb_enabled(rwb)) {
		atomic_inc(&rwb->inflight);
		return true;
	}

	return atomic_inc_below(&rwb->inflight, get_limit(rwb, rw));
}

/*
 * Block if we will exceed our limit, or if we are currently waiting for
 * the timer to kick off queuing again.
 */
static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
{
	DEFINE_WAIT(wait);

	if (may_queue(rwb, rw))
		return;

	do {
		prepare_to_wait_exclusive(&rwb->wait, &wait,
						TASK_UNINTERRUPTIBLE);

		if (may_queue(rwb, rw))
			break;

		if (lock)
			spin_unlock_irq(lock);

		io_schedule();

		if (lock)
			spin_lock_irq(lock);
	} while (1);

	finish_wait(&rwb->wait, &wait);
}

static inline bool wbt_should_throttle(struct rq_wb *rwb, unsigned int rw)
{
	/*
	 * If not a WRITE (or a discard), do nothing
	 */
	if (!(rw & REQ_WRITE) || (rw & REQ_DISCARD))
		return false;

	/*
	 * Don't throttle WRITE_ODIRECT
	 */
	if ((rw & (REQ_SYNC | REQ_NOIDLE)) == REQ_SYNC)
		return false;

	return true;
}

/*
 * Returns true if the IO request should be accounted, false if not.
 * May sleep, if we have exceeded the writeback limits. Caller can pass
 * in an irq held spinlock, if it holds one when calling this function.
 * If we do sleep, we'll release and re-grab it.
 */
bool wbt_wait(struct rq_wb *rwb, unsigned int rw, spinlock_t *lock)
{
	if (!rwb_enabled(rwb))
		return false;

	if (!wbt_should_throttle(rwb, rw)) {
		wb_timestamp(rwb, &rwb->last_issue);
		return false;
	}

	__wbt_wait(rwb, rw, lock);

	if (!timer_pending(&rwb->window_timer))
		rwb_arm_timer(rwb);

	return true;
}

void wbt_issue(struct rq_wb *rwb, struct wb_issue_stat *stat)
{
	if (!rwb_enabled(rwb))
		return;

	wbt_issue_stat_set_time(stat);

	/*
	 * Track sync issue, in case it takes a long time to complete. Allows
	 * us to react quicker, if a sync IO takes a long time to complete.
	 * Note that this is just a hint. 'stat' can go away when the
	 * request completes, so it's important we never dereference it. We
	 * only use the address to compare with, which is why we store the
	 * sync_issue time locally.
	 */
	if (!wbt_tracked(stat) && !rwb->sync_issue) {
		rwb->sync_cookie = stat;
		rwb->sync_issue = wbt_issue_stat_get_time(stat);
	}
}

void wbt_requeue(struct rq_wb *rwb, struct wb_issue_stat *stat)
{
	if (!rwb_enabled(rwb))
		return;
	if (stat == rwb->sync_cookie) {
		rwb->sync_issue = 0;
		rwb->sync_cookie = NULL;
	}
}

void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
{
	if (rwb) {
		rwb->queue_depth = depth;
		wbt_update_limits(rwb);
	}
}

void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
{
	if (rwb)
		rwb->wc = write_cache_on;
}

void wbt_disable(struct rq_wb *rwb)
{
	del_timer_sync(&rwb->window_timer);
	rwb->win_nsec = rwb->min_lat_nsec = 0;
	wbt_update_limits(rwb);
}
EXPORT_SYMBOL_GPL(wbt_disable);

struct rq_wb *wbt_init(struct backing_dev_info *bdi, struct wb_stat_ops *ops,
		       void *ops_data)
{
	struct rq_wb *rwb;

	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
	if (!rwb)
		return ERR_PTR(-ENOMEM);

	atomic_set(&rwb->inflight, 0);
	init_waitqueue_head(&rwb->wait);
	setup_timer(&rwb->window_timer, wb_timer_fn, (unsigned long) rwb);
	rwb->wc = 1;
	rwb->queue_depth = RWB_MAX_DEPTH;
	rwb->last_comp = rwb->last_issue = jiffies;
	rwb->bdi = bdi;
	rwb->win_nsec = RWB_WINDOW_NSEC;
	rwb->stat_ops = ops,
	rwb->ops_data = ops_data;
	wbt_update_limits(rwb);
	return rwb;
}

void wbt_exit(struct rq_wb *rwb)
{
	if (rwb) {
		del_timer_sync(&rwb->window_timer);
		kfree(rwb);
	}
}